
Equilibrium shapes of tubular lipid membranes, Supplementary Information

U. Jelerčič
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ANALYTICAL APPROXIMATIONS

Branches A1 and A2

The structure of the helical shape in branch A2 is modelled as a tube wrapped around a helix and can be parame-
terised as:

x = cos t (R+ rc cos θ) +
crc sin t sin θ√

c2 +R2
,

y = sin t (R+ rc cos θ)− crc cos t sin θ√
c2 +R2

,

z = ct+
Rrc sin θ√
c2 +R2

. (1)

Here θ denotes the angle of the tube [θ ∈ (0, 2π)] and t ∈ (0, 2π). R and rc correspond to the radius of the helix and
the radius of the tube, respectively, and 2πc is the helix pitch (Fig. 1).
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FIG. 1. Analytical model used for the helical branch A2. R and rc correspond to the helix and tube radius, respectively
and 2πc is helix pitch (left: lengthwise view, right: axial view).

The volume, surface area, segment length and bending energy can be then expressed as

V = 2π2r2c
√
c2 +R2, (2)

A = 4π2rc
√
c2 +R2, (3)

L = 2πc, (4)

F = 8πκ
π
(
c2 +R2

)3/2
4rc

√
(c2 +R2)

2 −R2r2c

. (5)

We model the snake-like structure in branch A1 by using an undulated backbone with a tube wrapped around it
(Fig. 2a). The backbone is assumed to be sinusoidal at segment lengths close to Lcyl and the parameterisation is:

x = rc sin θ,

y = R sin t∓ crc cos θ√
c2 +R2 cos2 t

,

z = ct± Rrc cos t cos θ√
c2 +R2 cos2 t

, (6)

where the top and bottom signs correspond to t ∈ (0, π) and t ∈ (π, 2π), respectively. The volume, surface area,
segment length, and bending energy are too tedious to be spelled out.
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FIG. 2. Analytical models used for the snake-like branch A1. a) Sinusoidal model relevant for segment lengths close
to Lcyl. b) Toroidal model used to describe the rest of the branch. c) Schematic representation of a possible snake-like shape
at extremely small segment lengths. This regime is not covered in our analytical analysis.

As the segment length is decreased, the tubular shape is compressed and the sinusoidal ansatz is no longer adequate.
In this case we take into account shape which is comprised of two toroidal halves connected by a straight cylindrical
part (Fig. 2b). The geometric constraints and the corresponding bending energy are

V = 2π2Rr2c + Lcπr
2
c , (7)

A = 4π2Rrc + 2Lcπrc, (8)

L = 4R, (9)

F =
8π2κR2

4rc
√
R2 − r2c

+ πκ
Lc
rc
. (10)

We note that even this shape does not represent a universally applicable approximation, since the tubular structure
is deformed further as L is decreased (Fig. 2c). However, at small reduced volumes relevant in cellular environment,
this happens at segment lengths so low that they do not represent the focus of our analysis.

Branch B

The structure in branch B is approximated by a cylindrical segment of radius rc and length Lc connected to an
axisymmetric body. We model the body in three different ways: i) as a sphere, ii) as a spherocylinder, and iii) as an
ellipsoid (Fig. 3).
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FIG. 3. Analytical approximations for the tube with an ellipsoidal body in branch B. a) Model with a spherical body
of radius Rs, representing the simplest and the most crude approximation. b) Model with a spherocylindrical body constructed
using two hemispheres of radius b and a cylindrical part of length a − b in between. c) The most exact model assuming an
axisymmetric ellipsoidal body with semiaxes a and b. In this case, the juncture between the body and the cylindrical portion
is less exact.

The volume, surface area, segment length, and free energy for all three models are as follows.
Spherical body model:

V = πr2cLc +
4

3
πR3

s −
πx

3

(
3r2c + x2

)
,

A = 2πrcLc + 4πR2
s − 4πRsx,

L = Lc + 2Rs − 2x,

F = 8πκ

(
1 +

1

8

Lc
rc
− x

Rs

)
, x = Rs −

√
R2
s − r2c . (11)
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Spherocylindrical body model:

V = πr2cLc + 2πb2(a− b) +
4

3
πb3 − πx

3

(
3r2c + x2

)
,

A = 2πrcLc + 4πb(a− b) + 4πb2 − 4πbx,

L = Lc + 2a− 2x,

F = 8πκ

(
1 +

1

8

Lc
rc

+
a− b

4b
− x

b

)
, x = b−

√
b2 − r2c . (12)

Ellipsoidal body model:

V = πr2cLc +
4

3
ab2π,

A = 2πrcLc + 2πb

[
b+

a2 arccos (b/a)√
a2 − b2

]
,

L = Lc + 2a,

F = 8πκ

(
1

8

Lc
rc

+ (13)∫ π

0

∫ 2π

0

a2 sin(v)
{

3a2 + (a2 − b2)
[
cos(2v)− 2 cos(2u) sin2(v)

]
+ 5b2

}2
256πb

{
sin2(v)

[
a2 sin2(u) + b2 cos2(u)

]
+ a2 cos2(v)

}5/2 dudv

)
.

The three models do not differ significantly, especially if we are only interested in the free energy of the structures.
Depending on the level of structural detail we wish to determine, an appropriate model is chosen. We note that we
used the spherocylindrical body model for the calculations presented in the paper.

Branch C

The simplest possible ansatz that describes the flattened discoidal body in branch C is comprised of a cylindrical
part and a torus or a torus section with a flat circular membrane parallel to the tube (Fig. 4).
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FIG. 4. Analytical approximation of tube with a discoidal body in branch C. a) Schematic representation of the
whole structure in top view. b) Two variants of the discoidal body cross-section shape, which differ in the way the rim portion
is approximated. The cross-sections correspond to the part of the circular structure marked by the vertical dashed line.

In the case of the full torus model, the volume, surface area, segment length, and the bending energy read

V = πr2cL+ 2π2Rr2,

A = 2πrcL+ 4π2Rr + 2π(R− r)2,
L = L+ 2(R+ r),

F = πκ
L

rc
+ 2π2κ

R2

r
√
R2 − r2

, (14)
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respectively, and in the truncated torus model (used for calculations presented in the paper) they are given by

V =
1

3
π(4r + 3πR)r2 + 2πR2r + Lcπr

2
c −

2

3
π
[
R3 − (R− r)3

]
,

A = 2π(R− r)2 + 2
√

2πr(2R− r) + 2πr(2r + πR) + 2Lcπrc,

L = L+ 2(R+ r),

F = 8πκ

1 +
Lc
8rc

+
R2
[
5 tan−1

(√
R−r
R+r

)
+ 4 tan−1

(
r−R√
R2−r2

)]
2r
√
R2 − r2

 . (15)

We note that in numerical solutions the assumption of a flat central part is enforced manually due to computational
reasons. An alternative to the flat shape is a curved morphology of the discoidal body and since it cannot be easily
found using our numerical approach, we explore this possibility analytically (Fig. 5).
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FIG. 5. Curved shape of discoidal body in branch C. a) Top view of the whole structure including the tubular and
discoidal part and b) cross-section of the reservoir at the position marked by a vertical dashed line. Angle β represents the
degree of curvature and is limited to β ∈ (0, π).

We find that the curved shape is energetically preferred at small segment lengths, whereas at L ∼ Lcyl the body
is expected to have a flat central part (Fig. 6). This transition is evident if we focus on the angle β used here to
qualitatively characterise the overall curvature of the body. The angle increases and diverges as the values of segment
length approach Lcyl, indicating that the transition between the decreasingly curved and the flat shape is indeed
expected. We point out, however, that the location of the transition depends on the reduced volume and in general
approaches Lcyl as v is decreased. We therefore expect the curved body to be the only possible equilibrium solution
at small reduced volumes for the whole range of L < Lcyl.
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FIG. 6. Shape of the discoidal body in branch C. a) The energies of the curved and the flat body structure as functions
of the segment length at v = 0.2. b) Parameter β representing the degree of curvature as a function of normalised segment
length.
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COMPARISON BETWEEN ANALYTICAL AND NUMERICAL SOLUTIONS

In order to demonstrate the agreement between our analytical approximations and the general numerical results,
we focus on the free energies of the structures. For each specific branch, we use the above mentioned models to
calculate the analytical solutions and Surface Evolver package to compute the numerical values. We note that the
latter depend on the mesh density (i.e. the total number of triangles used for the surface representation) and the
lower the density the less accurate the free energy. We therefore compute the energies at three different mesh densities
and extrapolate their values to mimic the limit of a smooth surface (i.e. infinite mesh density). The errors associated
with the numerical solutions are mainly due to the extrapolation process.
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FIG. 7. Comparison between numerical and analytical solutions in the case of a) snake-like branch A1 at v = 0.35
and b) helical branch A2 at v = 0.3. We use both sine and torus model to approximate the behaviour of the branch A1 and
we see that even though they eventually diverge, they perform very well in each of their respective regimes. The analytical
approximation for the branch A2, on the other hand, demonstrates a great agreement along the whole branch.
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FIG. 8. Comparison between numerical and analytical solutions for structures in branch B. The energies are shown
at a) v = 0.3 and b) v = 0.2. We see that in both cases all the analytical solutions cluster together and consistently follow the
numerically computed branch. The agreement even furthermore increases as the reduced volume is decreased, thus diminishing
the importance of details in modelling the rounded reservoir.
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Branch C
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FIG. 9. Comparison between numerical and analytical solutions for structures in branch C. The energies are
computed at a) v = 0.3 and b) v = 0.2. Similar to the case of branch B, we observe a good agreement between both types of
solutions, with the quality of the analytical approximations increasing as the reduced volume is decreased.


