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ESI 1 The projection method for an oblique substrate lattice

For the sake of completeness we demonstrate here that the pro-
jection of real-space adsorbate lattice points onto a substrate unit
cell (put forward in section 2.5 of the main text) is naturally not
restricted to any special Bravais lattice type. Indeed, no prereq-
uisite other than linear independence was made for ~s1 and ~s2 in
the first place; but because Fig. 1 in the main text was drawn
for |~s1| = |~s2| and ](~s1,~s2) = 120◦ one might have gotten the im-
pression that our arguments would have been valid for hexagonal
substrates only. This is clearly not the case as depicted in Supp.
Fig. 1 for an arbitrary oblique substrate lattice, i.e., |~s1| 6= |~s2| and
](~s1,~s2) 6= 90◦. There, |~s2|= G · |~s1| is chosen as an example, with
G = 2

π

∫ 1
0

d x√
1−x4 = 0.8346268 . . . being Gauss’s constant.
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Supp. Fig. 1 Projections of real-space adsorbate lattice points (•) onto
a substrate unit cell by calculating (p ·~a1 +q ·~a2)− (m ·~s1 +n ·~s2) numeri-
cally, with p,q∈Z chosen randomly between−1000 and 1000, and setting
m,n ∈ Z appropriately. The substrate unit cell drawn in red is spanned by
the basis vectors ~s1 and ~s2 whose lengths are |~s1|= 1 and |~s2|= G, while
](~s1,~s2) = 97◦. Note that this choice is arbitrary, and any other substrate
unit cell will yield similar images. The following epitaxy matrices from Ta-
ble 1 of the main text are used: (a) MA, (b) MB, (c) MC, (d) MD, (e) MF
[similar results for MG], (f) MH [similar results for ME], (g) MI, (h) MJ.

Apart from the different substrate unit cell, these projection
patterns were numerically calculated in exactly the same way
as described in section 2.5 using the exemplary epitaxy matrices
from Table 1 in the main text. Note that we did not simply shear
the projection patterns of the hexagonal substrate but performed
independent calculations for all patterns.

ESI 2 Permutation of basis vectors

Permutation of the basis vectors~b1 =~a2 and~b2 =~a1 is realized by(
~b1
~b2

)
= BP ·

(
~a1

~a2

)
=

(
0 1
1 0

)
·

(
~a1

~a2

)
(S1)

Several important conclusions can be drawn:

(a) The basis transformation in eqn (S1) does not change the
area of the parallelogram spanned by the basis vectors. It
can easily be seen that |~b1×~b2|= |~a1×~a2| since det(BP)=−1.
The minus sign herein means that the handedness of the
set of basis vectors is changed. Although right-handed co-
ordinate systems are generally preferred by convention, left-
handed coordinate systems are in principle equally possible
and do not render any of the arguments here invalid.

(b) For any basis transformation B with |det(B)| = 1 it follows
that if ~a1 and ~a2 are primitive basis vectors, then ~b1 and ~b2

are also primitive basis vectors.

(c) Permutation of the basis vectors of the substrate simply per-
mutes the columns of the epitaxy matrix.(

~a1

~a2

)
=

(
M11 M12

M21 M22

)
·

(
0 1
1 0

)
·

(
~s1

~s2

)

=

(
M12 M11

M22 M21

)
·

(
~s1

~s2

)
(S2)

Therefore, arguments applied to a specific column of the epi-
taxy matrix do not constitute a loss of generality.

(d) Permutation of the basis vectors of the adsorbate simply per-
mutes the rows of the epitaxy matrix.(

~b1
~b2

)
=

(
0 1
1 0

)
·

(
M11 M12

M21 M22

)
·

(
~s1

~s2

)

=

(
M21 M22

M11 M12

)
·

(
~s1

~s2

)
(S3)

Therefore, arguments applied to a specific row of the epitaxy
matrix do not constitute a loss of generality.

ESI 3 Choice of basis vectors and change of basis
Let ~s1 and ~s2 be the basis vectors of a two-dimensional grid of
lattice points with strict translational symmetry. We may define
an alternative set of basis vectors ~̃s1 and ~̃s2 according to:(

~s1

~s2

)
=

(
a b
c d

)
·

(
~̃s1

~̃s2

)
(a,b,c,d ∈ Z) (S4)
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Since linear independence of ~s1 and ~s2 is a prerequisite for a set
of basis vectors, it follows that ~̃s1 and ~̃s2 are also linearly indepen-
dent provided that det

(
a b
c d

)
6= 0. If a,b,c,d ∈ Z and if det

(
a b
c d

)
= 1

then both bases describe the same set of lattice points, i.e., the
position vectors of all lattice points can be expressed as linear
combinations of the respective basis vectors with integer coeffi-
cients. An epitaxial relation as in eqn (1) would then read(

~a1

~a2

)
=

(
M11 M12

M21 M22

)
·

(
a b
c d

)
︸ ︷︷ ︸

M̃

·

(
~̃s1

~̃s2

)
(S5)

Owing to the freedom of choice for the basis vectors it is clear that
the transformation of the basis cannot change the fundamental
nature of epitaxial coincidences. Only their indices should obvi-
ously be modified since eqn (7) would now read(

ha

ka

)
=

(
M11 M12

M21 M22

)
·

(
a b
c d

)
︸ ︷︷ ︸

M̃

·

(
h̃s

k̃s

)
(S6)

In particular, if we restrict ourselves to basis transformations with

det

(
a b
c d

)
= a ·d−b · c = 1 (a,b,c,d ∈ Z) (S7)

then this should not influence the specific type of epitaxy (i.e.,
commensurism, HOC, POL, LOL) at all. In the case of an arbitrary
coincidence of the order (hs,ks) one can try to transform the basis,
such that (without loss of generality) the order of coincidence
with the new basis is (h̃s, k̃s) = (1,0) and therefore primitive:(

hs

ks

)
=

(
a b
c d

)
·

(
h̃s

k̃s

)
!
=

(
a b
c d

)
·

(
1
0

)
=

(
a
c

)

In combination with eqn (S7) this will lead to integer solutions
for b and d with

hs ·d−b · ks = 1 (S8)

unless hs = n · p and ks = n · q (with n, p,q ∈ Z and |n| ≥ 2), be-
cause this yields hs · d− b · ks = n · (p · d− b · q) 6= 1 in violation of
eqn (S8). Note that this condition includes (hs,ks) = (0,0), (2,0),
(2,2), (3,0), (3,3), (4,0), (4,2), and so on, i.e., non-Miller indices.

If the order of coincidence (hs,ks) does not contain a common
factor n with |n| ≥ 2, a possible change of basis is described by the
matrix (

a b
c d

)
=

(
hs b
ks (1+b · ks)/hs

)
(S9)

To provide an example, we consider a coincidence of the order
(hs,ks) = (3,2) and choose the basis transformation(

~s1

~s2

)
=

(
3 4
2 3

)
·

(
~̃s1

~̃s2

)
(S10)

It is straightforward to verify that(
hs

ks

)
=

(
3 4
2 3

)
·

(
1
0

)
(S11)

and that det
(

3 4
2 3
)
= 1. Therefore, this basis transformation is not

only allowed, it also leaves the unit cell spanned by ~̃s1 and ~̃s2

primitive provided that ~s1 and ~s2 are primitive in the first place.
This example illustrates that for the basis vectors ~s1 and ~s2 the
coincidence (hs,ks) = (3,2) is non-primitive (which would be LOL
according to previous classifications4,19), while for the basis vec-
tors ~̃s1 and ~̃s2 the corresponding coincidence (h̃s, k̃s) = (1,0) is
primitive (which would be POL according to previous classifica-
tions4,19). In such cases a discrimination between POL and LOL
does depend on the choice of the basis which is not meaningful.

On the other hand, we consider a coincidence of the order
(hs,ks) = (4,2) and the basis transformation(

~s1

~s2

)
=

(
4 b
2 d

)
·

(
~̃s1

~̃s2

)
(S12)

Again, it is straightforward to verify that(
hs

ks

)
=

(
4 b
2 d

)
·

(
1
0

)
(S13)

However, det
(

4 b
2 d

)
6= 1 for all b,d ∈ Z. In such cases, a primi-

tive order of coincidence (h̃s, k̃s) = (1,0) can only be achieved for
|det

(
4 b
2 d

)
| ≥ 2 meaning that ~̃s1 and ~̃s2 would never be primitive

even if ~s1 and ~s2 are. If hs and ks have a common divisor |n| ≥ 2,
then a discrimination between POL and LOL would in principle
be possible. Nevertheless, as already stated in the main text, it
becomes evident that a strict distinction between POL and LOL –
via the order of coincidence (hs,ks) being either primitive or non-
primitive – may be rather cumbersome owing to the freedom of
choice of basis vectors. We thus recommend to employ the term
“on-line” coincident (OLC) of the order (hs,ks) and of course to
specify the basis vectors chosen to describe the respective lattices
in order to prevent ambiguity.

ESI 4 Distinction of cases

A classification scheme for lattice epitaxy can be derived from
eqn (7) by splitting each epitaxy matrix element Mi j into a ratio-
nal (Ri j ∈ Q) and an irrational (Ii j ∈ R\Q) part: Mi j = Ri j + Ii j.
Here, we use the fact that the sum of a rational and an irrational
number is irrational. Consequently, we can include any desired
irrational number in our discussion of M, but also all rational
numbers can be considered by simply omitting the respective Ii j.
We recall here that an epitaxy matrix M containing at least one
irrational element is incompatible with commensurism or higher
order commensurism, cf. section 2.4. Therefore, such an epitaxy
matrix either describes an “on-line” registry (i.e., all coincidences
are linearly dependent) or incommensurism (i.e., no coincidence
at all). In the following we develop a complete account of all
possible cases of M with at least one irrational element. The dis-
cussion is based on eqn (7) rewritten as(

ha

ka

)
=

(
R11 + I11 R12 + I12

R21 + I21 R22 + I22

)
·

(
hs

ks

)
(S14)
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ESI 4.1 Two irrational elements on a diagonal and at least
one rational element.

For M12,M21 ∈ R\Q and [without loss of generality] for M11 ∈ Q
eqn (14) in the main text can only be fulfilled for ks = 0. This
yields immediately ka = M21 · hs (for any M22 ∈ R) which cannot
be solved since M21 was assumed irrational. Hence, there are
no integer solutions {ha,ka,hs,ks} 6= 0 to eqn (14) for the cases(

Q R\Q
R\Q R\Q

)
and

(
Q R\Q

R\Q Q

)
as well as all permutations of rows

and columns thereof.

ESI 4.2 Two rational elements: one rational and one irra-
tional row.

For M11,M12 ∈ R\Q and for M21,M22 ∈Q eqn (S14) yields

ha = (R11 + I11) ·hs +(R12 + I12) · ks (S15)

ka = R21 ·hs +R22 · ks (S16)

which can only be solved if I11 ·hs+ I12 ·ks = 0, otherwise the ratio-
nality of all Ri j and the irrationality of all Ii j would not allow the
right-hand side of eqn (S15) to become integer. Consequently:

ha = (R11−R12 · I11/I12)︸ ︷︷ ︸
∈Q

·hs = (R12−R11 · I12/I11)︸ ︷︷ ︸
∈Q

·ks (S17)

ka = (R21−R22 · I11/I12)︸ ︷︷ ︸
∈Q

·hs = (R22−R21 · I12/I11)︸ ︷︷ ︸
∈Q

·ks (S18)

Only under the condition that I11/I12 = −ks/hs ∈ Q this yields
an “on-line” registry. However, in this particular case a coinci-
dence cannot be primitive, i.e., (hs,ks) = (1,0) or (hs,ks) = (0,1)
and multiples thereof can be ruled out here. If either hs = 0 or
ks = 0 then it follows immediately from eqns (S17) and (S18) that
ha = 0 and simultaneously ka = 0, which gives the trivial equal-
ity ~Ga(0,0) = ~Gs(0,0) =~0 and does not constitute a coincidence.
Hence, there are integer solutions {ha,ka,hs,ks} 6= 0 to eqn (14)

for the case
(
R\Q R\Q
Q Q

)
if I11 · hs = −I12 · ks and, likewise, for the

case
(

Q Q
R\Q R\Q

)
if I21 ·hs =−I22 · ks.

ESI 4.3 Two rational elements in a column and at least one
irrational element.

For M11,M21 ∈ Q and [without loss of generality] for M12 ∈ R\Q
eqn (14) can only be fulfilled for ks = 0. What remains is then

ha = M11 ·hs and ka = M21 ·hs (S19)

This is consistent with the initial assumption of two rational el-
ements in a column (here: the first). Therefore, in this case
there is always an “on-line” registry with hs 6= 0, irrespective of
the fourth epitaxy matrix element M22 ∈ R (recall that the trivial
equality ~Ga(0,0)= ~Gs(0,0)=~0 is not counted as a coincidence). In
other words, there are always integer solutions {ha,ka,hs,ks} 6= 0

to eqn (14) for the cases
(
Q R\Q
Q Q

)
and

(
Q R\Q
Q R\Q

)
as well as all

permutations of rows and columns thereof.

A noteworthy special case occurs for M11,M21 ∈Z and [without

loss of generality] for M12 ∈ R\Q. Then eqn (7) is fulfilled by(
ha

ka

)
=

(
M11 M12

M21 M22

)
·

(
1
0

)
=

(
M11

M21

)
(S20)

which is tantamount to ~Ga(M11,M21) = ~Gs(1,0). In other words, if
the first [second] column of the epitaxy matrix consists of integer
elements only, then there is always a coincidence with the prim-
itive reciprocal lattice vector of the substrate ~s∗1 [~s∗2]. This corre-
sponds to the definition of point-on-line (POL) coincidences.4,19

Nonetheless, we emphasize that a column consisting of integer
elements only is not mandatory for a POL registry. We turn back
to section ESI 3 and discuss two frequent special cases. First, let
us consider a particular change of the substrate basis according
to eqn (S5)(

~a1

~a2

)
=

(
M11 M12

M21 M22

)
·

(
1 0
f 1

)
︸ ︷︷ ︸

M̃

·

(
~̃s1

~̃s2

)
(S21)

with f ∈ Z with f 6= 0. We are still interested in the special case
M11,M21 ∈ Z and [without loss of generality] M12 ∈R\Q, because
this leads to a coincidence with the primitive reciprocal lattice
vector of the substrate~s∗1, thus expressing a POL coincidence with
(hs,ks) = (1,0) in the first place. Upon changing the substrate
basis, the transformed epitaxy matrix M̃ is obtained through:

M̃ =

(
M11 M12

M21 M22

)
·

(
1 0
f 1

)

=

(
(M11 + f ·M12) M12

(M21 + f ·M22) M22

)
=

(
M̃11 M̃12

M̃21 M̃22

)
(S22)

Quite importantly, both elements of the first row of M̃ are irra-
tional. An obvious consequence is that M̃ does not contain a col-
umn with integer elements only. Still, M̃ describes a POL coinci-
dence since the type of epitaxy should not change upon a legiti-
mate basis transformation. It is clear that the order of coincidence
(h̃s, k̃s) has changed upon transforming the basis according to:(

hs

ks

)
=

(
1 0
f 1

)
·

(
h̃s

k̃s

)
=

(
1
0

)
(S23)

(
h̃s

k̃s

)
=

(
1 0
− f 1

)
·

(
1
0

)
=

(
1
− f

)
(S24)

We see that for f =−1 the order of coincidence is (h̃s, k̃s) = (1,1)
and that the summation of the elements of each row of M̃ [cf.
eqn (S22)] yields integer values. Similarly, for f = 1 the order of
coincidence is (h̃s, k̃s) = (1,−1) and the subtraction of the elements
of each row of M̃ yields integer values. These two special cases
occur quite frequently.33 It is important to realize that the sum-
mation rule and the subtraction rule have nothing to do with the
type of Bravais lattice of the substrate, since no restrictions other
than linear independence apply to ~s1 and ~s2 in any of the above
arguments. Especially, a hexagonal symmetry is not required for
these rules as stated in previous work.1
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ESI 4.4 Four irrational elements.

Eqn (S14) is satisfied if all of the following conditions are met:

I11 ·hs =−I12 · ks (S25)

I21 ·hs =−I22 · ks (S26)

ha = R11 ·hs +R12 · ks (S27)

ka = R21 ·hs +R22 · ks (S28)

Under these circumstances there exists a coincidence. This is re-
markable because in the case of a fully irrational epitaxy matrix

it is obvious that no real-space matching of lattice points whatso-
ever can be achieved even for infinitely large grids (with transla-
tional symmetry).

ESI 5 Further comments and derivations
The derivation of eqn (18) of the main text is shown explicitly
in eqn (S29). Further, we demonstrate in eqn (S30) that for
a given coincidence ~Ga(ha,ka) = ~Gs(hs,ks) the lattice direction
of the adsorbate [−ka ·~a1 + ha ·~a2] is parallel to that of the
substrate [−ks ·~s1 + hs ·~s2], which illustrates the nomenclature
“line-on-line”. As stated in the main text it is clear that this very
coincidence also implies equidistant lines, i.e., dha,ka = dhs,ks .

(p ·~a1 +q ·~a2)− (m ·~s1 +n ·~s2) = (p ·M11 +q ·M21−m) ·~s1 +(p ·M12 +q ·M22−n) ·~s2

=

(
p · ha−M12 · ks

hs
+q ·M21−m

)
·~s1 +

(
p ·M12 +q · ka−M21 ·hs

ks
−n
)
·~s2

=

(
p · ha

hs
−m

)
·~s1 +

(
q · ka

ks
−n
)
·~s2 +

(
−p ·M12 ·

ks

hs
+q ·M21

)
·~s1 +

(
p ·M12−q ·M21 ·

hs

ks

)
·~s2

=

(
p · ha

hs
−m

)
·~s1 +

(
q · ka

ks
−n
)
·~s2 +

(
p ·M12

hs
− q ·M21

ks

)
· [−ks ·~s1 +hs ·~s2] (S29)

−ka ·~a1 +ha ·~a2 =−(M21 ·hs +M22 · ks) · [M11 ·~s1 +M12 ·~s2]+ (M11 ·hs +M12 · ks) · [M21 ·~s1 +M22 ·~s2]

= [hsM11(M21−M21)− ks(M22M11−M12M21)] ·~s1 +[ksM22(M12−M12)+hs(M22M11−M12M21)] ·~s2

= (M22M11−M12M21) · [−ks ·~s1 +hs ·~s2] = detM · [−ks ·~s1 +hs ·~s2] ⇒ [−ka ·~a1 +ha ·~a2] ‖ [−ks ·~s1 +hs ·~s2] (S30)

End of file.
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