Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Nanoporous Carbons Derived from MOFs as Metal-Free Catalysts

for Selective Aerobic Oxidations

Xi Wang, Yingwei Li*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

* Corresponding author. Email: liyw@scut.edu.cn

This PDF file includes:

Tables S1, S2

Figs. S1 to S12

Item	ZIF-67	ZIF-8	Co-MOF-71
Identification code	Co(MeIM) ₂	Zn(MeIM) ₂	Co(BDC)
Empirical formula	$C_8H_{10}CoN_4$	$C_8H_{10}ZnN_4 \\$	$C_8H_4CoO_4$
Formula weight	221.13	229.59	223.05
Metal precursor	Co(NO ₃) ₂ 6H ₂ O	Zn(NO ₃) ₂ 6H ₂ O	Co(NO ₃) ₂ 6H ₂ O
Organic linker	MeIM	MeIM	нооссоон 1,4-BDC
Crystal system	cubic	cubic	orthorhombic
SBU^a			

 Table S1. Crystallographic date for ZIF-67, ZIF-8, and Co-MOF-71.

^a SBU refers to secondary building units. SBU of Co-MOF-71 is reproduced from ref. S1.

	С	N	Н	Со
Sample	content	content	content	content
	$(\mathrm{wt\%})^a$	$(\mathrm{wt\%})^a$	$(\mathrm{wt\%})^a$	$(\mathrm{wt\%})^b$
67-CN-600	78.7	16.5	1.3	-
67-CN-700	84.8	10.9	1.2	-
67-CN-800	92.2	4.8	0.7	-
67-CN-900	95.8	2.1	0.6	-
8-CN-600	79.6	15.6	2.0	-
71-C-600	95.6	0.1	1.2	-

Table S2. Characterization results of the materials.

^a Measured by elemental analysis.

^b Measured by AAS.

Figure S1. Powder XRD patterns of the porous N-doped carbons derived from Co-MOF-71 (up) and ZIF-8 (down).

Figure S2. Photos of Co/CN-600 (left) and 67-CN-600 (right) in solution close to a magnet.

Figure S3. TEM images of Co/C-600 (a, c) and the obtained 71-C-600 (b, d) after chemical etching.

Figure S4. TEM images of ZnO/CN-600 (a, c) and the obtained 8-CN-600 (b, d) after chemical etching.

Figure S5. Raman spectra of the resultant porous N-doped carbons derived from Co-MOF-71 (up) and ZIF-8 (down).

Figure S6. TEM image (a), HAADF-STEM image (b) of an individual 67-CN-600 particle and the corresponding elemental mappings of C (c), N (d), O (e) and Co (f), respectively.

Figure S7. (a) N_2 adsorption/desorption isotherm at 77 K of Co/C-600 and 71-C-600. (b) Pore-size distribution of Co/C-600 and 71-C-600. (c) N_2 adsorption/desorption isotherm at 77 K of ZnO/CN-600 and 8-CN-600. (d) Pore-size distribution of ZnO/CN-600 and 8-CN-600.

Figure S8. Surface areas (a) and pore volumes (b) of the carbon samples.

Figure S9. XPS survey spectra of Co/CN-600 (red) and 67-CN-600 (black).

Figure S10. High-resolution C 1s XPS spectra of the 8-CN-600 and 67-CN-X samples.

Figure S11. Plots of conversion in oxidation of cyclohexane against the amount of graphitic (a), pyridinic (b), and pyrrolic (c) nitrogen species on the nitrogen-doped carbon catalysts listed in Table 2 (entries 4-8).

Figure S12. The reusability of 67-CN-600 in the cyclohexane oxidation.

Reference

S1. N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe and O. M. Yaghi, *J. Am. Chem. Soc.*, 2005, **127**, 1504-1518.