Electronic Supplementary Information (ESI)

Regulating the oxidation degree of nickel foam: A smart strategy to

controllably synthesize active Ni₃S₂ nanorod/nanowire arrays for

high-performance supercapacitors

Tingting Li[†], Yunpeng Zuo[†], Xiaomin Lei, Na Li, Jiawei Liu and Heyou Han*

State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, PR China [†]These authors contributed equally to this work. *Corresponding author. Tel: +86-27-87288505; Fax: +86-27-87288505 E-mail: hyhan@mail.hzau.edu.cn

Fig. S1 SEM images of pure NF at different magnifications.

87288505; E-mail: hyhan@mail.hzau.edu.cn.

^{*}To whom correspondence should be addressed. Fax: +86-27-87288505; Tel: +86-27-

Fig. S2 Electrochemical performances of NF, NF-6, NF-4, NF-2 and NF-0 electrodes.
(a) CV curves at a scan rate of 5 mV s⁻¹. (b) GCD curves at a current density of 5 mA cm⁻².

Fig. S3 Cycling performance of NF-S, NF-6-S, NF-4-S and NF-2-S electrodes at a current density of 20 mA cm⁻².

Fig. S4 Cycling performance of NF electrode at a current density of 5 mA cm⁻².

Electrode	Capacitance	Rate	Capacitance	Reference
materials		capability	rentention after	
			cycling	
NF-4-S	4.52 F cm^{-2}	53% from 2.5 to	108.3% after	This work
	(1051 F g^{-1}) at	30 mA cm^{-2}	2000	
	1.25 mA cm^{-2}		cycles at 20 mA	
			cm ⁻²	
NiCo ₂ S ₄	1948 mF cm ⁻²	79% from 1.0 to	94% after 5000	Ref. 54
nanotubes@	at 1.0 mA cm ^{-2}	20 mA cm^{-2}	cycles at 2 mA	
NiCo ₂ S ₄			cm^{-2}	
nanosheets				
Flaky Ni ₃ S ₂	717 F g^{-1} at 2 A	57.3% from 2	62% after 1000	Ref. 52
	g ⁻¹	to 32 A g ⁻¹	cycles at 4 A g ⁻¹	
NiCo ₂ S ₄ /CFP	1.19 F cm^{-2} at	70.0% from 1.0	75.9% after 5000	Ref. 55
	1.0 mA cm^{-2}	to 25 mA cm ^{-2}	cycles at 20 mA	
			cm ⁻²	
CNT@Ni ₃ S ₂	514 F g^{-1} at 4 A	70.4% from 4	88% after 1200	Ref. 22
hybrid	g^{-1}	to 13.3 A g ⁻¹	cycles at 5.3 A	
			g ⁻¹	
NiCo ₂ S ₄	1093 F g^{-1} at	85.4% from 0.2	63% after 1000	Ref. 56
porous	0.2 A g^{-1}	to 1.0 A g ⁻¹	cycles at 1.0 A	
nanotubes			g ⁻¹	
Ni ₃ S ₂ dendrites	710.4 F g^{-1} at	66.2% from 2.0	No capacitance	Ref. 32
	2.0 A g^{-1}	to 14 A g ⁻¹	loss after 2000	
			cycles at 5.0 A	
			g ⁻¹	
Ni ₃ S ₂	$0.387 \text{ F cm}^{-2} \text{ at}$	70.9% from 1.0	77.2% after 5000	Ref. 23
nanoflakes	10 mA cm^{-2}	to	cycles at 10.0 mA	
		10 mA cm ⁻²	cm ⁻²	
NiS nanosheets	2.64 F cm^{-2}	56.4% from 2.5	90% after 2000	Ref. 53
	$(527 \text{ F g}^{-1}) \text{ at}$	to	cycles at 10 mA	
	2.5 mA cm^{-2}	100 mA cm^{-2}	cm^{-2}	

Table S1 Comparison of electrochemical performance of different electrode materials

Fig. S5 (a) CV curves of NPGC electrode at different scan rates in 3 M KOH. (b)
 GCD curves of NPGC electrode at different current densities. (c) Specific capacitance of the NPGC electrode at various current densities. (d) Cycle performance of the NPGC electrode at a current density of 30 mA cm⁻².

Fig. S6 TEM image of NPGC.

Fig. S7 CV curves of NF-4-S//NPGC asymmetric supercapacitor at scan rate of 20 mV s⁻¹ with different scan voltage windows in 3 M KOH electrolyte.