Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplemental Information for

Ethanolamine-functionalized fullerene as an efficient electron

transport layer for high-efficiency inverted polymer solar cells

Jieming Zhen,^{‡a}, Qing Liu,^{‡a}, Xiang Chen^a, Dan Li^a, Qiquan Qiao^b, Yalin Lu^a, and Shangfeng Yang^a*

 ^a Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China
^b Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer

Sciences, South Dakota State University, Brookings, SD, 57007, USA

Contents

- S1. FTIR spectra of C₆₀-ETA and ETA.
- S2. XPS analysis of C₆₀-ETA.
- S3. TGA analysis of C₆₀-ETA.
- S4. Transmittance spectra of ITO and ITO/C₆₀-ETA.
- S5. AFM height images of ITO with C₆₀-ETA or ZnO layer.
- S6. Enhancement ratios of the photovoltaic parameters.

S7. UV-vis absorption spectra of different active layers on ITO/C_{60} -ETA or ITO/ZnO.

- S8. Electron mobilities of different active layer films on ITO/C₆₀-ETA or ITO/ZnO.
- S9. Determination of work function of ITO/C₆₀-ETA or ITO/ZnO by SKPM.

S1. FTIR spectra of C₆₀-ETA and ETA.

Figure S1. FTIR spectra of C_{60} -ETA and ETA.

S2. XPS analysis of C₆₀-ETA.

Table S1. The binding energies (BE) of C1s, N1s and O1s cores and calculated atomic percentage (Atom%) of C, N, O.

Core	Start BE	Peak BE	End BE	FWHM ^[a]	Area ^[b]	Atom% ^[c]	Atomic ratio ^[d]	Theor.
	(eV)	(eV)	(eV)	(eV)				Atomic ratio [e]
C1s	291.25	284.5	281.6	1.44	65402.24	78.17		
N1s	403.05	398.52	395.8	1.46	10982.78	8.10	9.65:1:1.7	9.5:1:1
O1s	535	531.65	527.5	1.72	27864.92	13.73		

^[a] FWHM: full width at half maximum; ^[b] Integrated area; ^[c] Calculated from the percentage of the integrated area; ^[d] The atomic ratio of C:N:O; ^[d] Theoretical atomic ratio of C:N:O calculated according to the estimated average molecular formula of $C_{60}(NHC_2H_4OH)_8(H)_8$ (= $C_{76}N_8O_8H_{56}$). The deviation of atomic ratio of N:O is likely because of the well-known inaccuracy of O1s signal intensity measured by XPS. Note that the atomic ratio of C:N calculated from elemental analysis is ~9.44:1 according to the weight percentages of 78.43% and 9.69% for C and N, agreeing with those of the calculated one and measured by XPS.

S3. TGA analysis of C₆₀-ETA.

Figure S2. TGA curve (solid line) and differential thermo-gravimetric (DTG) curve (dashed line) of C_{60} -ETA.

S4. Transmittance spectra of ITO and ITO/C₆₀-ETA

Figure S3. Transmittance spectra of bare ITO and ITO/C₆₀-ETA.

S5. AFM height images of ITO with C₆₀-ETA or ZnO layer.

Figure S4. AFM height images (5 μ m × 5 μ m) of bare ITO (a), ITO/ZnO (b), ITO/C₆₀-ETA (c).

S6. Enhancement ratios of the photovoltaic parameters.

Figure S5. Enhancement ratios of Jsc and PCE for the C_{60} -ETA-incorporated devices relative to those of ZnO-incorporated ones.

Figure S6. UV-vis absorption spectra of PTB7-Th:PC₇₁BM (a), PBDTTT-C:PC₇₁BM (b) and P3HT:PC₆₁BM (c) active layer films on ITO/C₆₀-ETA or ITO/ZnO.

S8. Electron mobilities of different active layer films on ITO/C₆₀-ETA or ITO/ZnO.

Table S2. Electron mobilities of different active layer films on ITO/C_{60} -ETA or ITO/ZnO.

Active layer	Device	ETL	$\mu_e (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})^{[a]}$
PTB7-Th:PC ₇₁ BM	Α	C ₆₀ -ETA	5.54×10 ⁻⁴
_	В	ZnO	1.51×10 ⁻⁴
PBDTTT-C:PC ₇₁ BM	С	C ₆₀ -ETA	4.19×10 ⁻⁴
_	D	ZnO	1.58×10 ⁻⁴
P3HT:PC ₆₁ BM	Ε	C ₆₀ -ETA	9.60×10 ⁻⁴
-	F	ZnO	1.27×10 ⁻⁴

^[a] Measured by electron-only devices with the structure of ITO/ETL/active layer/Ca/Al.

S9. Determination of work function of ITO/C₆₀-ETA or ITO/ZnO by SKPM.

Device	ITO/ETL				
	without ETL (bare)	ZnO ETL	C ₆₀ -ETA ETL		
Surface potential (SP, mV)	546	857	875		
$\Delta SP (mV)^{a}$	-	311	329		
$\Delta\Phi$ (eV) ^b	-	0.31	0.33		
Φ (eV)	-4.7 ^c	-4.39	-4.37		

Table S3. The surface potentials and work functions of ETLs.

^a Δ SP is the surface potential change of ITO/ETL relative to the bare ITO;

^b Φ is the work function of film sample, $\Delta \Phi$ is the work function change of ITO/ETL relative to the bare ITO. $\Delta \Phi = e\Delta SP$;

^c The work function of the bare ITO (Φ (bare ITO)= -4.7 eV) is referred to ref. S1.

 Φ (ITO/ETL)= Φ (bare ITO) + $\Delta \Phi$.

Reference:

[S1]. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, *Nature Photon.* 2012, *6*, 593.