Electronic Supplementary Information

Active Sites-enriched Hierarchical MoS₂ Nanotubes: Highly Active and Stable

Architectures for Boosting Hydrogen Evolution and Lithium Storage

Jin Wang,^{† $\perp //$} Jilei Liu,^{# $\perp //$} Hao Yang, ^{‡*} Zhen Chen,^{† \perp} Jianyi Lin,^{# *} and Ze Xiang Shen^{† $\perp *$}

[†] Energy Research Institute (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, 637553, Singapore

[⊥] Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore [#] Energy Research Institute (ERI@N), Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore

[‡]Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

**E-mail: zexiang@ntu.edu.sg; Lijy@ntu.edu.sg; yanghao@jsnu.edu.cn*

^{//}J. Wang and J. L. Liu contributed equally to this work.

Electrode	1st Specific	1st	Cycling	Rate performance
description	capacity (mAhg ⁻	Coulombic	stability	
	¹)	efficiency		
MT@MS/GF (this work)	1487 mAh g ⁻¹ at 100 mA g ⁻¹	81.7%	892 mAh g ⁻¹ after 200 cycles at 500 mA g ⁻¹	1025, 916 and 775 mAh g ⁻¹ at 1000, 2000 and 5000 mA g ⁻¹
Honeycomb-like MoS ₂ nanoarchitectures on 3DGF [1]	1397 mAh g ⁻¹ at 100 mA g ⁻¹	82.9%	1100 mAh g ⁻¹ after 60 cycles at 200 mA g ⁻¹	1172, 1095, 1007, 966 and 800 mAh g ⁻¹ at 200, 500, 1000, 2000 and 5000 mA g ⁻¹
Worm-like MoS ₂ nanoarchitectures on GF/CNTs film[3]	1568 mAh g ⁻¹ at 100 mA g ⁻¹	79.8%	1112 mAh g ⁻¹ after 120 cycles at 200 mA g ⁻¹	1368, 1140, 1064, 1006 and 823 mAh g ⁻¹ at 200, 500, 1000, 2000 and 5000 mA g ⁻¹
MoS ₂ @graphene nanocables [4]	1150 mAh g ⁻¹ at 500 mA g ⁻¹		900 mAh g^{-1} after 700 cycles at 5 A g^{-1}	1150 and 700 mAh g ⁻¹ at 500 mA g ⁻¹ and 10 A g ⁻¹
MoS ₂ -carbon nanofiber composite [5]	1712 mAh g ⁻¹ at 100 mA g ⁻¹	74%	1007 mAh g ⁻¹ after 100 cycles at 1 A g ⁻¹	1095, 986, 768, 637, 620, 548 and 347 mAh g ⁻¹ at 0.5, 1, 5, 10, 20, 30 and 50 A g ⁻¹
MoS ₂ -graphene- carbon nanotube nanocomposites [6]	949 mAh g ⁻¹ at 100 mA g ⁻¹		886 mAh g ⁻¹ after 100 cycles at 1 A g ⁻¹	949, 883, 858, 737 and 652 mAh g ⁻¹ at 100, 500, 1000, 5000 and 10000 mA g ⁻¹
Hierarchical C@MoS ₂ microspheres [7]			750 mAh g ⁻¹ after 50 cycles at 100 mA g ⁻¹	500 mAh g ⁻¹ at 1000 mA g ⁻¹
MoS ₂ nanoflake array/carbon cloth[8]	3.5 mAh cm ⁻² at a current density of 0.15 mA cm ⁻²	97.6%	~	3.26, 2.73, 2.39, 1.72, 1.24, and 0.85 mAh cm ⁻² at current densities of 0.15, 0.3, 0.75, 1.5, 2.25, and 3.0 mA cm ⁻²
$MoS_2/3DGN^{[9]}$	1222 mAh g ⁻¹ at 100 mA g ⁻¹	83.50%	877 mAh g ⁻¹ after 50 cycles	849, 782, 692, 597 and 466 mAh g ⁻¹ at

Table S1 A survey of electrochemical properties of MoS_2 and its hybrid composites for LIBs.

			at 100 mA g ⁻¹	100, 200, 500, 1000 and 4000 mA
				g ⁻¹
MoS ₂ /graphene	2200 mAh g ⁻¹		1290 mAh g ⁻¹	1040 mAh g ⁻¹ at
nanosheet ^[10]	at 100 mA g ⁻¹	59.10%	after 50 cycles	1040 mArg at 1000 mA g^{-1}
			at 100 mA g ⁻¹	
MoS ₂ /graphene	1462 mAh g ⁻¹		1187 mAh g ⁻¹	900 mAh g^{-1} at
composites[11]	at 100 mA g^{-1}	58.5%	after 100 cycles	1000 mA g^{-1}
Maß /ana and ana	2100 411		at 100 mA g^{-1}	
$MoS_2/amorphous$	2100 mAn g^{-1}	44 100/	912 mAn g^{-1}	
carbon ^[12]	at 100 mA g ¹	44.10%	after 100 cycles at $100 \text{ m} $	
$CNT@MoS_{13}$	$1/3/1$ mAh σ^{-1}		at 100 mA g	653 159 and 369
$CIVI @IVIOS_2^{t-1}$	at 100 m Δ g ⁻¹		698 mAh g ⁻¹	$m\Delta h \sigma^{-1}$ at 200
	ut 100 mr g	60.01%	after 60 cycles	500 and 1000 mA
			at 100 mA g ⁻¹	g ⁻¹
MoS ₂ /amorphous	2108 mAh g ⁻¹		755 mAh g ⁻¹	
carbon ^[14]	at 100 mA g ⁻¹	79%	after 100 cycles	$850 \text{ mAh } \text{g}^{-1} \text{ at } 400$
	U		at 100 mA g ⁻¹	$mA g^{-1}$
MoS ₂ /PS	1160 mAh g ⁻¹		672 m h a-1	726, 581 and 353
microspheres ^[15]	at 100 mA g ⁻¹	68 20%	of 2 mAn g	mAh g ⁻¹ at 200,
		08.2070	at 100 mA σ^{-1}	500 and 1000 mA
			at 100 mA g	g ⁻¹
Graphene-network-	1200 mAh g ⁻¹		1200 mAh g ⁻¹	620 and 270 mAh
backnoned MoS ₂ ^[16]	at 600 mA g^{-1}	68%	after 30 cycles	g^{-1} at 7200 and
			at 600 mA g ⁻¹	84000 mA g ⁻¹
MoS ₂ nanoplates ^[17]	1062 mAh g ⁻¹	87%	907 mAh g ⁻¹	790 and 700 mAh
	at 1062 mA g ⁻¹		after 50 cycles	g^{-1} at 31.8 and
			at 100 mA g ⁻¹	53.1A g ⁻¹
$3D \text{ MoS}_2 \text{ flowers}^{[10]}$	869 mAh g ⁻¹	(5.000/	633 mAh g^{-1}	848 and 740 mAh
	at 100 mA g ⁻¹	65.90%	after 50 cycles	g^{-1} at 100 and 400
Masonorous Mos [19]			at 100 mA g	002 880 845 705
Wiesoporous WioS ₂ ¹⁰⁹				903, 880, 843, 793, 748, 670 and 608
	$1052 \text{ mAh } \text{g}^{-1}$		876 mAh g ⁻¹	$m\Delta h \sigma^{-1}$ at 100
	at 100 mA g^{-1}	83.90%	after 100 cycles	200 500 1000
	ut 100 mr g		at 100 mA g ⁻¹	2000 and 5000 mA
				g ⁻¹
MoS ₂ /CNT				1431, 1367, 1302
network ^[20]	1715 mAh g ⁻¹	A C 100/	1456 mAh g ⁻¹	and 1224 mAh g^{-1}
	at 200 mA g^{-1}	/6.10%	atter 50 cycles	at 400, 600, 800
	-		at 200 mA g ⁻¹	and 1000 mA g^{-1}
MoS _x /CNT ^[21]	1549 mAh g ⁻¹	71 800/	$\geq 1000 \text{ mAh g}^{-1}$	1119, 904, 659,
	at 50 mA g ⁻¹	/4.0070	after 40 cycles	358 and 197 mAh

			at 50 mA g ⁻¹	g ⁻¹ at 50, 200, 500 and 1000 mA g ⁻¹
MoS ₂ -CNT film ^[22]	1117 mAh g ⁻¹ at 100 mA g ⁻¹	73.40%	960 mAh g^{-1} after 100 cycles at 100 mA g^{-1}	670 (3200) 670 mAh g ⁻¹ at 3200 mA g ⁻¹
Hollow MoS ₂ nanoparticles ^[23]	1236 mAh g ⁻¹ at 100 mA g ⁻¹	74%	902 mAh g^{-1} after 80 cycles at 100 mA g^{-1}	1030, 950, 910, 850 and 780 mAh g ⁻¹ at 100, 200, 300, 500 and 1000 mA g ⁻¹
3D MoS ₂ assembly tubes ^[24]	1172 mAh g ⁻¹ at 100 mA g ⁻¹	68.30%	839 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	600 and 500 mAh g ⁻¹ at 1000 and 5000 mA g ⁻¹
MoS ₂ -graphene composites ^[25]	1367 mAh g ⁻¹ at 100 mA g ⁻¹	66.70%	$808 \text{ mAh } \text{g}^{-1}$ after 100 cycles at 100 mA g ⁻¹	571 mAh g ⁻¹ at 1000 mA g ⁻¹
PEO/MoS ₂ /graphene	1150 mAh g^{-1} at 50 mA g^{-1}	74%	\geq 1000 mAh g ⁻¹ after 180 cycles at 50 mA g ⁻¹	650 mAh g ⁻¹ at 200 mA g ⁻¹
MoS ₂ /polyaniline ^[27]	1460 mAh g^{-1} at 100 mA g $^{-1}$	72.80%	953 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	1006 mAh g ⁻¹ at 200 mA g ⁻¹
MoS ₂ /C nanotube ^[28]	1320 mAh g^{-1} at 200 mA g^{-1}	70.50%	776 mAh g^{-1} after 100 cycles at 200 mA g^{-1}	450-600 mAh g ⁻¹ at 1000 mA g ⁻¹
MoS ₂ @carbon spheres ^[7]	1020 mAh g^{-1} at 100 mA g $^{-1}$	73.50%	750 mAh g^{-1} after 50 cycles at 100 mA g^{-1}	500 mAh g ⁻¹ at 1000 mA g ⁻¹
MoS ₂ @carbon layer ^[29]	1251 mAh g ⁻¹ at 1000 mA g ⁻¹	90.70%	814 mAh g^{-1} after 100 cycles at 1000 mA g^{-1}	600 mAh g ⁻¹ at 4000 mA g ⁻¹
MoS ₂ @CMK-3 ^[30]	1056 mAh g ⁻¹ at 250 mA g ⁻¹	78.03%	$602 \text{ mAh } \text{g}^{-1}$ after 100 cycles at 250 mA g^{-1}	832, 774, 666 and 564 mAh g ⁻¹ at 250, 500, 1000 and 2000 mA g ⁻¹
Fe ₃ O ₄ /MoS ₂ ^[31]	1320 mAh g ⁻¹ at 100 mA g ⁻¹	81.74%	1200 mAh g ⁻¹ after 560 cycles at 500 mA g ⁻¹	1189, 943, 569, 362 and 270, 224 mAh g ⁻¹ at 1000, 2000, 4000, 6000, 8000 and 10000 mA g ⁻¹
MoS ₂ /TiO ₂ ^[32]	931 mAh g ⁻¹ at 100 mA g ⁻¹	74%	$472 \text{ mAh } \text{g}^{-1}$ after 100 cycles at 100 mA g ⁻¹	713, 636, 533 and 461 mAh g ⁻¹ at 100, 200, 500 and

			1000 mA g ⁻¹
Table S2 A survey of electronic	rochemical properties	s of MoS_2 and its hybrid c	omposites for HER.
Catalyst	Tafle Slope [mV decade ⁻¹]	Onset overpotential [mV vs RHE]	Exchange current densities (j ₀) [mA cm ⁻²]
MT@MS/GF			
(this work)	52	77	6.4*10 ⁻²
Defect-rich MoS ₂ nanosheets ^[32]	50	120	8.91*10-3
MoS ₂ /CoSe ₂ hybrids ^[33]	36	11	7.3*10-2
graphene-surpported MoS ₂ ^[34]	41	~100	
MoS _x Grown on Graphene-Protected 3D Ni Foams ^[35]	42.8	109-141	
MoO ₃ -MoS ₂ Nanowires ^[36]	50-60	150-200	
MoS ₂ on Mesoporous Graphene ^[37]	42	90-120	
MoS ₂ nanofilms ^[38]	43~47	113	0.13~0.25
MoS ₂ /N-doped CNT ^[39]	40	~75	3.3*10-2
MoS ₂ nanoflower/rGO paper ^[40]	95	190	
MoS ₂ on 3D substrates ^[41]	62	~100	
Mesoporous MoS ₂ ^[42]	50	150-200	

 $\label{eq:Figure S1} \textbf{Figure S1}. \ \textbf{SEM} \ \textbf{and} \ \textbf{TEM} \ \textbf{images of (a-d)} \ \textbf{MoS}_2/Ni_3S_2@MoS_2 \ \textbf{and} \ \textbf{(e-i)} \ Ni_3S_2@MoS_2.$

Figure S2. SEM (a-b), and TEM (c-e) images of GF.

Figure S3 XRD pattern of MT/GF.

Figure S4. Cyclic voltammograms of the MT@MS/GF recorded between -0.6 and 0 V (vs. SCE, in 0.5 M H_2SO_4) at a sweep rate of 5 mV s⁻¹.

Explanation of the calculation of catalytic parameters:

(a) All the parameters were measured under the same conditions, i.e., the MT@MS/GF and MT/GF catalyst with loading weights of 1.2 and 0.5 mg cm⁻² on GF directly tested in 0.5 M H₂SO₄ solution;

(b) Calculation of active sites;

The absolute components of voltammetric charges which include both the cathodic and anodic scans can be attained from the CV shown in the **Figure S3**. The total absolute charge is then divided by two, assuming a one electron redox process. Later, this value is further divided by Faraday constant to get number of active sites (in moles) of the MT@MS /GF and MT/GF.

(c) TOFs were measured at $\eta = 300 \text{ mV}$;

Once the number of active sites is obtained, the turn over frequency (TOF) can be calculated using the equation:

$$TOF = \frac{I \ 1}{Fn2}$$

Where,

I – Current in Amperes during the linear sweep measurement.

F – Faraday constant in C/mol.

n - Number of active sites in mol. The factor $\frac{1}{2}$ represents that 2 electrons are required to form one hydrogen molecule from two protons.

(d) Exchange current densities (j_0) were obtained from Tafel curves by using extrapolation methods.

Figure S5. Detailed microstructure characterization after long-term HER cycling test. XPS spectra of (a) Mo 3d peaks and (b) S 2p peaks of the MT@MS/GF. (c) Raman spectra of the MT@MS/GF.

Figure S6. Time dependence of current density for the MT/GF catalyst under a constant potential of -0.17 V vs RHE.

Figure S7. Detailed morphology characterization after long-term HER cycling test. a) SEM images of MT@MS. b) TEM image of MT@MS. c, d) HRTEM images of MT@MS, showing MoS₂ nanosheets decorating MoS₂ nanotubes and crystal planes of MT@MS.

Figure S8 Cycling behaviors of the MT@MS/GF electrode at a current density of 500 mA g^{-1} .

Table S3 The comparison of electrochemical performances for two electrodes, MT@MS/GF and MT/GF.

Electrode description	1st Specific capacity (mAhg ^{_1})	1st Coulombic efficiency	Cycling stability (%)	Rate performance
MT@MS/GF	1487 mAh g ⁻ ¹ at 100 mA g ⁻¹	81.7%	892 mAh g ⁻¹ after 200 cycles at 500 mA g ⁻¹	1025, 916 and 775 mAh g ⁻¹ at 1000, 2000 and 5000 mA g ⁻¹
MT/GF	1382 mAh g ⁻ ¹ at 100 mA g ⁻¹	75.2%	727 mAh g ⁻¹ after 100 cycles at 500 mA g ⁻¹	894, 765 and 648 mAh g ⁻¹ at 1000, 2000 and 5000 mA g ⁻¹

Figure S9. SEM images of the MT@MS/GF electrode as anode of LIBs after cycling for 200 times at a current density of 500 mA g^{-1} .

1. Wang, J.; Liu, J.; Chao, D.; Yan, J.; Lin, J.; Shen, Z. X., Adv Mater 2014, 26 (42), 7162-9.

- 3. Kong, D. B.; He, H. Y.; Song, Q.; Wang, B.; Lv, W.; Yang, Q. H.; Zhi, L. J., *Energy & Environmental Science* **2014**, *7* (10), 3320-3325.
- 4. Zhu, C.; Mu, X.; van Aken, P. A.; Yu, Y.; Maier, J., *Angewandte Chemie International Edition* **2014**, *53* (8), 2152-2156.
- 5. Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y., *Advanced Energy Materials* **2015**, *5* (4), Doi: 10.1002/Aenm.201401170.
- 6. Zhang, L.; Lou, X. W., Chemistry A European Journal 2014, 20 (18), 5219-5223.
- 7. Yu, H.; Zhu, C.; Zhang, K.; Chen, Y.; Li, C.; Gao, P.; Yang, P.; Ouyang, Q., *Journal of Materials Chemistry A* **2014**, *2* (13), 4551-4557.
- 8. Cao, X.; Shi, Y.; Shi, W.; Rui, X.; Yan, Q.; Kong, J.; Zhang, H., Small 2013, 9 (20), 3433-3438.
- 9. Chang, K.; Chen, W., Chemical Communications 2011, 47 (14), 4252-4254.
- 10. Chang, K.; Chen, W., ACS Nano 2011, 5 (6), 4720-4728.
- 11. Chang, K.; Chen, W.; Ma, L.; Li, H.; Li, H.; Huang, F.; Xu, Z.; Zhang, Q.; Lee, J.-Y., *Journal of Materials Chemistry* **2011**, *21* (17), 6251-6257.
- 12. Ding, S.; Chen, J. S.; Lou, X. W., *Chemistry A European Journal* **2011**, *17* (47), 13142-13145.
- 13. Das, S. K.; Mallavajula, R.; Jayaprakash, N.; Archer, L. A., *Journal of Materials Chemistry* 2012, 22 (26), 12988-12992.
- 14. Ding, S.; Zhang, D.; Chen, J. S.; Lou, X. W., Nanoscale 2012, 4 (1), 95-98.
- 15. Gong, Y.; Yang, S.; Liu, Z.; Ma, L.; Vajtai, R.; Ajayan, P. M., *Advanced Materials* **2013**, *25* (29), 3979-3984.
- 16. Hwang, H.; Kim, H.; Cho, J., Nano Letters 2011, 11 (11), 4826-4830.
- 17. Li, H.; Li, W.; Ma, L.; Chen, W.; Wang, J., Journal of Alloys and Compounds 2009, 471 (1-2), 442-447.
- 18. Liu, H.; Su, D.; Zhou, R.; Sun, B.; Wang, G.; Qiao, S. Z., *Advanced Energy Materials* **2012**, *2* (8), 970-975.
- 19. Lu, C.; Liu, W.-w.; Li, H.; Tay, B. K., Chemical Communications 2014.
- 20. Shi, Y.; Wang, Y.; Wong, J. I.; Tan, A. Y. S.; Hsu, C.-L.; Li, L.-J.; Lu, Y.-C.; Yang, H. Y., *Sci. Rep.* **2013**, *3*.
- 21. Wang, J.-Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S.-L.; Liu, H.-K.; Minett, A. I.; Chen, J., *Advanced Energy Materials* **2013**, *3* (6), 798-805.
- 22. Wang, M.; Li, G.; Xu, H.; Qian, Y.; Yang, J., ACS Appl Mater Interfaces 2013, 5 (3), 1003-8.
- 23. Wang, P. P.; Sun, H.; Ji, Y.; Li, W.; Wang, X., Adv Mater 2014, 26 (6), 964-9.
- 24. Wang, Z.; Chen, T.; Chen, W.; Chang, K.; Ma, L.; Huang, G.; Chen, D.; Lee, J. Y., *Journal of Materials Chemistry A* **2013**, *1* (6), 2202-2210.
- 25. Xiao, J.; Wang, X. J.; Yang, X. Q.; Xun, S. D.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P., *Advanced Functional Materials* **2011**, *21* (15), 2840-2846.
- 26. Yang, L.; Wang, S.; Mao, J.; Deng, J.; Gao, Q.; Tang, Y.; Schmidt, O. G., *Advanced Materials* **2013**, *25* (8), 1180-1184.
- 27. Zhang, C.; Wang, Z.; Guo, Z.; Lou, X. W., *ACS Applied Materials & Interfaces* **2012**, *4* (7), 3765-3768.
- 28. Zhao, X.; Hu, C.; Cao, M., Chemistry An Asian Journal 2013, 8 (11), 2701-2707.
- 29. Zhou, X. S.; Wan, L. J.; Guo, Y. G., Nanoscale 2012, 4 (19), 5868-5871.

30. Chen, Y.; Song, B.; Tang, X.; Lu, L.; Xue, J., Small 2014, 10 (8), 1536-1543.

31. Xu, X.; Fan, Z.; Ding, S.; Yu, D.; Du, Y., Nanoscale 2014, 6 (10), 5245-5250.

32. Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., *Advanced Materials* **2013**, *25* (40), 5807-5813.

33. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H., *Nat Commun* **2015**, *6*, 5982.

34. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., *Journal of the American Chemical Society* **2011**, *133* (19), 7296-7299.

35. Chang, Y.-H.; Lin, C.-T.; Chen, T.-Y.; Hsu, C.-L.; Lee, Y.-H.; Zhang, W.; Wei, K.-H.; Li, L.-J., *Advanced Materials* **2013**, *25* (5), 756-760.

36. Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., *Nano Letters* **2011**, *11* (10), 4168-4175.

37. Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B., *Advanced Functional Materials* **2013**, *23* (42), 5326-5333.

Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P.-C.; Yan, K.; Bradshaw, D.; Prinz,
F. B.; Cui, Y., *Proceedings of the National Academy of Sciences* 2013, *110* (49), 19701-19706.

39. Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O., *Nano Letters* **2014**, *14* (3), 1228-1233.

40. Ma, C.-B.; Qi, X.; Chen, B.; Bao, S.; Yin, Z.; Wu, X.-J.; Luo, Z.; Wei, J.; Zhang, H.-L.; Zhang, H., *Nanoscale* **2014**, *6* (11), 5624-5629.

- 41. Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y., ACS Nano 2014, 8 (5), 4940-4947.
- 42. Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F., Nat Mater 2012, 11 (11), 963-969.