In-situ Growth of Binder-free CNTs@Ni-Co-S Nanosheet Core/Shell Hybrids on Ni Mesh for High Energy Density

Asymmetric Supercapacitors

*Tianquan Peng, Huan Yi, Peng Sun, Yuting Jing, Ruijing Wang, Huanwen Wang and Xuefeng Wang**

Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, China

Fig. S1. (a) TEM image of the CNTs grown on Ni mesh. (b) FESEM overview images for the CNTs@Ni-Co-S composites on Ni mesh. (c-d) TEM images for Ni-Co-S nanosheets.

Fig. S2. The XRD patterns for Ni mesh, Ni@CNTs and Ni@CNTs@Ni-Co-S.

Fig. S3. (a-c) SEM images of the CNTs grown on carbon cloth. (b) TEM image for the CNTs on carbon cloth.

Fig. S4. Nyquist plots of (a) Ni@CNTs@Ni-Co-S and Ni@Ni-Co-S (inset: EIS spectrum in high frequency), (b) Ni@CNTs@Ni-Co-S//CC@CNTs asymmetric supercapacitors.

The Nyquist plots of Ni@CNTs@Ni-Co-S and Ni@Ni-Co-S are illustrated in Fig. S4. As shown in Fig. S4a, the axis intercepts in the high frequency range of the Ni@CNTs@Ni-Co-S is much smaller than the Ni@Ni-Co-S, indicating

Ni@CNTs@Ni-Co-S has a much smaller internal resistance (Rs). In addition, it is obvious that the semicircle of the Ni@CNTs@Ni-Co-S is much smaller than the Ni@Ni-Co-S, indicating Ni@CNTs@Ni-Co-S has a much lower interfacial charge-transfer resistance (Rct). Furthermore, Ni@CNTs@Ni-Co-S exhibits a slightly more vertical line in the low frequency range, suggesting that Ni@CNTs@Ni-Co-S has a lower Warburg resistance (described as diffusive impedance of ions) than Ni@Ni-Co-S. All the evidence show that the "core/shell" design of CNTs@Ni-Co-S composites realize a lower resistance than Ni-Co-S.

Fig. S4b illustrates the impedance data of Ni@CNTs@Ni-Co-S//CC@CNTs asymmetric supercapacitors. It can be found that the device has a low Rs ($\approx 0.6 \Omega$), relatively high Rct and low Warburg resistance.

Ni-Co-S based electrode	Potential range	Specific capacitance	Rate capability	Ref.	
CNTs@Ni-Co-S nanosheet	-0.2 V ~ 0.6 V	$-0.2 \ V \sim 0.6 \ V \qquad 222 \ mAh \ g^{-1} \qquad 193 \ mAh \ g^{-1}$		this work	
core/shell arrays	(vs. SCE)	at 4 A g ⁻¹	at 50 A g ⁻¹	uns work	
	0V~0.565V	180 mAh g ⁻¹	139 mAh g ⁻¹ (77.3%)	1	
urchin-like $N_1Co_2S_4$	(vs. Hg/HgO)	at 1 A g ⁻¹	at 20 A g ⁻¹		
NiCo ₂ S ₄ nanosheets on	0V~0.5V	202 mAh g ⁻¹	106 mAh g ⁻¹ (52.4%)	2	
graphene	(vs. Ag/ AgCl) at 3 A g ⁻¹		at 20 A g ⁻¹	2	
NiCo ₂ S ₄ porous nanotubes	-0.1V~0.5V	-0.1V~0.5V 152 mAh g ⁻¹ 76 mAh g vs. Hg/HgO) at 0.2 A g ⁻¹ at 5 A		3	
	(vs. Hg/HgO)				
	0V~0.55V	7 366 mAh g ⁻¹ 248 mAh g ⁻¹ (6			
$N_1Co_2S_4$ nanotube arrays	(vs. Hg/HgO)	at 5 mA cm ⁻²	at 150 mA cm ⁻²	4	
	-0.2V~0.6V	197 mAh g ⁻¹	178 mAh g ⁻¹ (90.6%)		
N1-Co-S nanosheet arrays	(vs. Ag/ AgCl)	at 5 A g ⁻¹	at 100 A g ⁻¹	5	
CoNi ₂ S ₄ /graphene	0V~0.38V	212 mAh g ⁻¹	110 mAh g ⁻¹ (52.1%)	6	
nanocomposite	(vs. SCE)	at 1 A g ⁻¹	at 20 A g ⁻¹	0	
CoNi ₂ S ₄ nanosheet arrays	0V~0.45V	363 mAh g ⁻¹	284 mAh g ⁻¹ (78.1%)) 7	
	(vs. SCE)	at 5 mA cm ⁻²	at 50 mA cm ⁻²		
	0V~0.45V	0V~0.45V 302 mAh g ⁻¹ 147 r			
NI-Co sulfide nanowires	(vs. Ag/ AgCl)	at 2.5 mA cm ⁻²	at 30 mA cm^{-2}	0	
NixCo _{3-x} S ₄ hollow	0V~0.5V	124 mAh g ⁻¹	81 mAh g ⁻¹ (65.4%)	0	
nanoprisms	(vs. SCE)	at 1 A g ⁻¹	at 20 A g ⁻¹	,	
core-shell NiCo ₂ S ₄	0V~0.5V	271 mAh g ⁻¹	215 mAh g ⁻¹ (79.4%)	10	
nanostructures	(vs. Hg/HgO)	at 1 mA cm ⁻²	at 20 mA cm ⁻²		
carbon@NiCo2S4 nanorods	0V~0.45V	182 mAh g ⁻¹	158 mAh g ⁻¹ (86.7%)		
	(vs. Ag/ AgCl)	(vs. Ag/ AgCl) at 1 A g ⁻¹		11	
Ni-Co-S ball-in-ball	-0.1V~0.55V	158 mAh g ⁻¹	108 mAh g ⁻¹ (68.1%)	12	
hollow spheres	(vs. SCE)	at 1 A g ⁻¹	at 20 A g ⁻¹	12	
carbon-NiCo ₂ S ₄ nanosheet	-0.2V~0.8V	368 mAh g ⁻¹	146 mAh g ⁻¹ (39.6%)	13	
arrays	(vs. SCE)	at 2 mA cm ⁻²	at 200 mA cm ⁻²	15	
NiCo ₂ S ₄ mesoporous	0V~0.5V	103 mAh g ⁻¹	86 mAh g ⁻¹ (83.3%)	14	
nanosheets	(vs. Hg/HgO)	at 1 A g ⁻¹	at 20 A g ⁻¹	11	
NiCo ₂ S ₄ nanoparticles on	-0.2V~0.4V	190 mAh g ⁻¹	129 mAh g ⁻¹ (67.9%)	15	
graphene	(vs. Ag/ AgCl)	at 1 A g ⁻¹	at 40 A g ⁻¹		
NiCo ₂ S ₄ flaky arrays	-0.1V~0.5V	284 mAh g ⁻¹	145 mAh g ⁻¹ (51.1%)	16	
	(vs. SCE)	vs. SCE) $at 1 A g^{-1}$ at		10	
NiCo ₂ S ₄ /Ni(OH) ₂ core-shell	-0.2V~0.6V	338 mAh g ⁻¹	200 mAh g ⁻¹ (59.3%)	17	
nanotube arrays	(vs. Hg/HgO)	at 1 mA cm ⁻²	at 20 mA cm ⁻²	± /	
hollow Ni _x Co _{9-x} S ₈	0V~0.45V	176 mAh g ⁻¹	73 mAh g ⁻¹ (41.3%)) 18	
urchins@N-doped carbon	(vs. Ag/ AgCl)	at 2 A g ⁻¹	at 8 A g ⁻¹		

Table S1. Electrochemical properties for nickel cobalt sulfide-based supercapacitors reported in recent years.

Desitive electrode	Negative Highest		Maximum	Maximum	Dof	
rositive electrode	electrode	potential	energy density	power density	Kel.	
CNTs@Ni-Co-S	CNT	$1 \in \mathbf{V}$	49.2 Wh kg ⁻¹ (at	40 kW kg ⁻¹ (at	this work	
core/shell arrays	CNIS	1.0 V	800 W kg ⁻¹)	18.9 Wh kg ⁻¹)		
NiCo ₂ S ₄ nanotube	reduced	1.6 V	31.5 Wh kg ⁻¹ (at	2348.5 W kg ⁻¹	4	
arrays	grapnene oxide(RGO)		156.6 W kg ⁻¹)	(at 16.6 Wh kg ⁻¹)		
Ni-Co-S nanosheet	porous	1.0.17	60 Wh kg ⁻¹ (at	28.8 kW kg ⁻¹ (at	5	
arrays	graphene film	1.8 V	1.8 kW kg ⁻¹)	33 Wh kg ⁻¹)	5	
CoNi ₂ S ₄ nanosheet	active carbon	1 7 17	33.9 Wh kg ⁻¹ (at	2458 W kg ⁻¹ (at	7	
arrays	(AC)	1.7 V	409 W kg ⁻¹)	27.2 Wh kg ⁻¹)		
Ni–Co sulfide	10	1.0.17	25 Wh kg ⁻¹ (at	3.57 kW kg ⁻¹ (at	8	
nanowires	AC	1.8 V	447 W kg ⁻¹)	17.8 Wh kg ⁻¹)		
porous Ni-Co	DCO	1 (17	37.6 Wh kg ⁻¹ (at	23.25 kW kg ⁻¹	19	
sulphides	RGO	1.6 V	775 W kg ⁻¹)	(at 17.7 Wh kg ⁻¹)		
core-shell NiCo ₂ S ₄	1	1 (17	22.8 Wh kg ⁻¹ (at	2.47 kW kg ⁻¹ (at	10	
nanostructures	porous carbon	1.6 V	160 W kg ⁻¹)	10.6 Wh kg ⁻¹)		
2D porous Ni-Co	10	1.0.17	41.4 Wh kg ⁻¹ (at	4.8 kW kg ⁻¹ (at	20	
Sulfide	AC	1.8 V	414 W kg ⁻¹)	23.8 Wh kg ⁻¹)		
	FeOOH	1.6 V	45.9 Wh kg ⁻¹ (at	8.6 kW kg ⁻¹ (at	21	
$N_1Co_2S_4$ nanosheets	nanorods		1.7 kW kg ⁻¹)	19.9 Wh kg ⁻¹)		
	graphene/	1.6 V		10.01.001 1 ()	12	
N1-Co-S ball-in-ball	carbon		42.3 Wh kg^{-1} (at	10.2 kW kg ⁻¹ (at		
hollow spheres	spheres		476 W kg^{-1}	22.9 Wh kg^{-1})		
carbon-NiCo ₂ S ₄	10	1.0.17	68.82 Wh kg ⁻¹ (at	1.4 kW kg ⁻¹ (at	13	
nanosheet arrays	AC	1.8 V	47.83 W kg ⁻¹)	26.74 Wh kg ⁻¹)		
NiCo ₂ S ₄ mesoporous	1.0	1 (17	25.5 Wh kg ⁻¹ (at	8 kW kg ⁻¹ (at	14	
nanosheets	AC	1.6 V	334 W kg ⁻¹)	10.8 Wh kg ⁻¹)	14	
3D cauliflower-like			44.0 101 1 1 ()	161301 164		
NiCo ₂ S ₄	AC	1.6 V	44.8 Wh kg ⁻¹ (at	16 kW kg^{-1} (at	22	
architectures			401 W kg ⁻¹)	23.1 Wh kg^{-1}		
graphene@NiCo ₂ S ₄	1.0	1 7 17	68.5 Wh kg ⁻¹ (at	17 kW kg ⁻¹ (at	15	
nanoparticles	AC	1.7 V	850 W kg ⁻¹)	37.7 Wh kg ⁻¹)		
mesoporous NiCo ₂ S ₄	10	1 7 17	28.3 Wh kg ⁻¹ (at	9.8 kW kg ⁻¹ (at	23	
nanoparticles	AC	1.5 V	245 W kg ⁻¹)	6.8 Wh kg ⁻¹)	23	

Table S2. Energy densities and power densities for nickel cobalt sulfide-based ASCs in recent reports.

Current density (A g ⁻¹)	1	2	4	8	10	15	20	30	40	50
$E = I \int_{t=0}^{t=t} V(t) dt$ (Wh kg ⁻¹)	46.5	42.1	38.9	35.3	34.2	29.8	26.4	21.1	17.4	15.9
E=0.5C _s $\Delta V^{2}/3.6$ (Wh kg ⁻¹)	49.2	45.6	41.9	37.9	34.4	31.0	28.9	22.0	19.6	18.9

Table S3. Energy densities comparison calculated via two different methods

References

- 1. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia, *Nanoscale*, 2013, 5, 8879-8883.
- 2. S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Yan, *Chem. Commun.*, 2013, 49, 10178-10180.
- H. Z. Wan, J. J. Jiang, J. W. Yu, K. Xu, L. Miao, L. Zhang, H. C. Chen and Y. J. Ruan, *Crystengcomm*, 2013, 15, 7649-7651.
- 4. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, *J. Power Sources* 2014, 254, 249-257.
- 5. W. Chen, C. Xia and H. N. Alshareef, Acs Nano, 2014, 8, 9531-9541.
- 6. W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang and X. Qian, *Journal of Materials Chemistry A*, 2014, 2, 9613.
- 7. W. Hu, R. Chen, W. Xie, L. Zou, N. Qin and D. Bao, *ACS Appl. Mat. Interfaces* 2014, 6, 19318-19326.
- 8. Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. Zhang, *Journal of Materials Chemistry A*, 2014, 2, 6540.
- 9. L. Yu, L. Zhang, H. B. Wu and X. W. Lou, *Angewandte Chemie-International Edition*, 2014, 53, 3711-3714.
- 10. W. Kong, C. C. Lu, W. Zhang, J. Pub and Z. H. Wang, *Journal of Materials Chemistry A*, 2015, 3, 12452-12460.
- 11. L. Li, Z. Dai, Y. Zhang, J. Yang, W. Huang and X. Dong, *RSC Advances*, 2015, 5, 83408-83414.
- 12. L. Shen, L. Yu, H. B. Wu, X.-Y. Yu, X. Zhang and X. W. Lou, *Nature Communications*, 2015, 6.
- 13. H. Wang, C. Wang, C. Qing, D. Sun, B. Wang, G. Qu, M. Sun and Y. Tang, *Electrochim. Acta* 2015, 174, 1104-1112.
- 14. Z. Wu, X. Pu, X. Ji, Y. Zhu, M. Jing, Q. Chen and F. Jiao, *Electrochim. Acta* 2015, 174, 238-245.
- 15. Y. Xiao, D. Su, X. Wang, L. Zhou, S. Wu, F. Li and S. Fang, *Electrochim. Acta* 2015, 176, 44-50.
- 16. Z. H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng and F. F. Xu, Appl. Surf. Sci.,

2015, 347, 690-695.

- 17. J. Zhang, H. Gao, M. Y. Zhang, Q. Yang and H. X. Chuo, *Appl. Surf. Sci.*, 2015, 349, 870-875.
- Y. Zhang, C. Sun, H. Su, W. Huang and X. Dong, *Nanoscale*, 2015, 7, 3155-3163.
- 19. H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo and D. Xia, *Journal of Materials Chemistry A*, 2015, 3, 428-437.
- 20. X. Li, Q. Li, Y. Wu, M. Rui and H. Zeng, ACS Appl. Mat. Interfaces 2015, 7, 19316-19323.
- 21. Y. Li, M. Zhou, X. Cui, Y. Yang, P. Xiao, L. Cao and Y. Zhang, *Electrochim. Acta* 2015, 161, 137-143.
- 22. Y. Xiao, Y. Lei, B. Zheng, L. Gu, Y. Wang and D. Xiao, *Rsc Advances*, 2015, 5, 21604-21613.
- 23. Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song and X. Ji, *J. Power Sources* 2015, 273, 584-590.