Supporting Information

Ranunculus-like Core-shell Ni(OH)₂@Mn₂O₃ as a High Specific Capacitance Cathode Material for Alkaline Supercapacitors

Qian Ren,^a Rongfang Wang,^{*a} Hui Wang,^a Julian Key,^a Dan J. L. Brett,^b Shan Ji,^b

Shibin Yin^c and Pei Kang Shen**c

^aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

^bEIL, Dept. Chemical Engineering, and Chemistry Dept. University College London, London WC1E 7JE, UK

°Collaborative Innovation Center of Renewable Energy Materials(CICREM), Guangxi University, Nanning, 530004, China

Experimental

Material synthesis:

All experiments used analytic grade reagents and ultrapure water. Ranunculus flower-like Ni(OH)₂@Mn₂O₃ with core-shell structure were prepared by a two-step procedure. Firstly, ranunculus flower-like Ni(OH)₂ was synthesized using 2 mmol of Ni(CH₃COO)₂ dissolved in 57.5 mL deionized water, to which 2.5 mL of glycerol was added drop-wise under magnetic stirring to form a homogeneous blue solution. The solution was transferred to a 100 mL Teflon–lined stainless steel autoclave, which was then sealed and oven heated at 200 °C for 6 h. Upon unassisted cooling to room temperature, the resultant greenish precipitate was then separated by centrifugation with repeated washing with distilled water and ethanol, and then finally dried at 60 °C in air.

Ni(OH)₂@Mn₂O₃ was prepared by dispersing the as-prepared Ni(OH)₂ in 5 mL deionized water, followed by addition of different amounts of KMnO₄ (0.002, 0.01, 0.02, 0.05, and 0.1 mol L⁻¹) solution under magnetic stirring at room temperature. The reactions were held for 10 min, and the light-brown Ni(OH)₂@Mn₂O₃ resultant product was centrifuged, washed with distilled water and ethanol, and finally dried at 60 °C in air. **Characterization**

XRD patterns were recorded on a Shimadzu XD–3A (Japan) using filtered Cu-K α radiation (λ = 0.15418 nm)

generated at 40 kV and 30 mA. Scans for 20 values were recorded at 4° min⁻¹. Scanning electron microscopy (SEM) images were obtained using a Carl Zeiss Ultra Plus. Transmission electron microscopy (TEM) high angle annular dark field scanning transmission electron microscopy (STEM) images of the catalysts were obtained using a JEOL (JEM-2000 FX) microscope operating at 200 kV. Raman spectroscopy was recorded on Bruker Senterra Raman spectrometer with 532 nm wavelength excitation at 2 mW power. Specific surface area was determined by Brunauer-Emmett-Teller (BET) method, and the BJH method was used for analyzing the full range of pore size distribution based on the desorption isotherms obtained on a Quantachrome Autosorb-1 volumetric analyzer. X-Ray Photoelectron Spectroscopy (XPS) spectra were generated using a PHI-5702 multifunctional X-ray photoelectron spectrometer (American). Binding energies were determined by referencing to the C 1 s peak at 285.0 eV.

Electrochemical measurements

Cyclic voltammograms (CV) and galvanostatic charge/discharge tests on Ni(OH)₂@Mn₂O₃ were carried out in a three-electrode cell system. The working electrode comprised a film of Ni(OH)₂@Mn₂O₃, carbon black and poly(tetrafluoroethylene) with a mass ratio of 80:10:10, pressed into Ni foam current collectors. An Hg/HgO (1.0 M KOH) reference electrode and activated carbon counter electrode in 6 mol L⁻¹ KOH + 0.3 mol L⁻¹ LiOH electrolyte was used in all experiments. CV tests were done on a CHI 650D electrochemical workstation. Galvanostatic charge/discharge tests were carried out on a Neware Battery Tester (BTS6.0, Neware Technology Company, Guangdong, China).

The capacitance of the electrode (C) was calculated according to the following equation based on CVs or the discharge curves.

$$C = \frac{Q}{V} = \frac{i\Delta t}{\Delta Vm} \tag{1}$$

where *i* is the sampled current, Δt is a sampling time span, ΔV is the total potential deviation of the voltage window, and *m* is the mass of the active material examined.

Fig. S1 XRD patterns of Ni(OH)₂@Mn₂O₃ prepared using different KMnO₄ concentrations "a-e" at 0.002, 0.01, 0.02, 0.05 and 0.1 mol L⁻¹ respectively.

Fig. S2 SEM images of $Ni(OH)_2@Mn_2O_3$ prepared in the absence of glycerol.

Fig. S3 SEM images of $Ni(OH)_2$ @Mn₂O₃ prepared with 30 min (a), 1 h (b) and 6 h (c) of the reaction time.

Fig. S4 Mechanism for the formation of ranunculus flower-like $Ni(OH)_2@Mn_2O_3$.

Fig. S5 SEM images of Ni(OH)₂@Mn₂O₃ prepared using KMnO₄ concentrations "a-e" at 0.002, 0.01, 0.05 and 0.1 mol L⁻¹ respectively.

Fig.S6 Raman spectra of Ni(OH)₂@Mn₂O₃ prepared using KMnO₄ concentrations "a-e" at 0.002, 0.01, 0.05 and 0.1

mol L⁻¹ respectively.

Fig. S7 N₂ isotherms of (a) Ni(OH)₂ and Ni(OH)₂@Mn₂O₃ prepared using KMnO₄ concentrations at (b) 0.002, (c) 0.01, (d) 0.02, (e) 0.05 and (f) 0.1 mol L⁻¹ respectively, Inset: the corresponding pore size distribution; and (g) BET surface areas of the six samples.

Fig.S8 XPS of Ni(OH)₂@Mn₂O₃. (a) overall XPS survey; (b) Ni 2p; (c) Mn 2p; and (d) O 1s.

Fig.S9 CV curves of Ni(OH)₂@Mn₂O₃ prepared using different KMnO₄ concentrations "a-e" at 0.002, 0.01, 0.02, 0.05 and 0.1 mol L⁻¹ respectively. Scan rates: 50 mV s⁻¹; Electrolyte: 6 mol L⁻¹ KOH+0.3 mol L⁻¹ LiOH solution.

Fig.S10 (a) Galvanostatic charge-discharge plots of $Ni(OH)_2@Mn_2O_3$ and (b) specific capacitance of samples prepared using different KMnO₄ concentrations "a-e" at 0.002, 0.01, 0.02, 0.05 and 0.1 mol L⁻¹ respectively. Current density: 2 A g⁻¹; Electrolyte: 6 mol L⁻¹ KOH + 0.3 mol L⁻¹ LiOH solution.

Fig.S11 SEM images of $Ni(OH)_2@Mn_2O_3$ before (a,b) and after (c,d) 1000 continuous charge-discharge cycles at a current density of 2 A g⁻¹.