Electronic Supporting Information

Molten salt synthesis of nitrogen doped porous carbon: A new

preparation methodology for high-volumetric capacitance electrodes

materials

Tian Ouyang, Kui Cheng*, Yinyi Gao, Shuying Kong, Ke Ye, Guiling Wang,

Dianxue Cao*

Key Laboratory of Superlight Material and Surface Technology of Ministry of

Education, College of Material Science and Chemical Engineering, Harbin

Engineering University, Harbin 150001, China

Table S1: Chemical composition of Fresh tofu

Composition	Contents (in every 100g)
Moisture	80 g
Protein	12.2 g
Fat	4.8 g
Carbohydrate	2 g
Dietary fiber	0.5 g
Ca	138 mg
Mg	63 mg

 Table S2: The carbon yield of different samples

Sample	Yield
PC	12.0%
APC	4.8%
NPC-750-0	11.8%
NPC-750-0.15	8.0%
NPC-750-0.25	5.2%
NPC-750-0.35	3.4%
NPC-650-0.25	12.0%
NPC-850-0.25	4.6%

^{*} Corresponding author. Tel: 010-86-451-82589036, Fax: 010-86-451-82589036, E-mail address: <u>chengkui@hrbeu.edu.cn</u> (Kui Cheng) <u>caodianxue@hrbeu.edu.cn</u> (Dianxue Cao).

	SSA	$V_{\rm total}{}^{\rm a}$	$I_{\rm D}/I_{\rm G}$	Elemental analysis		XPS ^b			% of total N1s			C _m ^c	C_{V}^{d}		
	[m ² g ⁻¹]	[cm ³ g ⁻¹]		C%	N%	0%	Н%	C%	N%	0%	N-5	N-6	N-Q	[F g ⁻¹]	[F cm ⁻³]
NPC-650-0.25	794	0.48	0.910	74.21	5.79	18.21	1.79	83.63	5.24	10.63	43	21	36	245	250
NPC-850-0.25	1193	0.69	0.944	83.02	3.68	12.14	1.16	89.70	3.52	6.78	44	22	34	323	223
NPC-750-0.15	1143	0.67	0.936	78.55	5.93	14.41	1.11	87.33	5.36	7.31	55	18	27	244	209
NPC-750-0.35	1097	0.70	0.941	80.81	4.39	13.35	1.45	87.96	3.91	8.13	47	20	33	207	173
^a Total pore volume. ^b Weight percent of elements obtained from XPS analysis. ^c Gravimetric capacitance obtained at a current density of 1 A g ⁻¹ in 6 mol															
L-1 KOH based on three-electrode system ^d Volumetric capacitance obtained at a current density of 1 A g-1 in 6 mol L-1 KOH based on three-electrode															
system.															

Table S3: Physical and electrochemical properties of the as-prepared carbon materials

Table S4: Comparison of the properties of carbon materials synthesized from other

Materials	Activating agent	SSA (m ² g ⁻¹)	Maximum Capacitance (F g ⁻¹)	Measurements done at	Electrolyte	Ref.
Corncob residue	oxidizing gas	1210	314	5 mV s ⁻¹	6 М КОН	1
egg yolk	КОН	2277	287	0.5 A g ⁻¹	6 М КОН	2
bagasse waste	КОН	2296	320	0.5 A g ⁻¹	6 M KOH	3
Lignin	KOH/NaOH	1400	344	10 mV s ⁻¹	6 M KOH	4
Seaweed biopolymer	No activation	270	198	2 mV s ⁻¹	1 M H ₂ SO ₄	5
microalgae	КОН	2130	200	0.1 A g ⁻¹	6 M LiCl	6
acacia gum	КОН	1832	272	1 A g ⁻¹	6 M KOH	7
Paulownia Sawdust	NaOH	1900	227	2 mV s ⁻¹	6 M KOH	8
rice husk	H ₃ PO ₄	1493	112	1 A g ⁻¹	1 M Na ₂ SO ₄	9
Pulp sludge	КОН	2980	190	2 mV s ⁻¹	EMIM TFSI	10
Banana bers	ZnCl ₂	1097	74	0.5 A g ⁻¹	1 M Na ₂ SO ₄	11
Tofu	LiNO ₃	1202	429	1 A g ⁻¹	6 M KOH	This work

biomass and their application in supercapacitors

Materials	Medium	Max energy density	Max power density	Ref.
Nanoporous carbon	1 M H ₂ SO ₄	20 Wh kg ⁻¹	_	12
Seaweeds-derived carbon	1 M H ₂ SO ₄	19.5 Wh kg ⁻¹	_	13
sugarcane bagasse	1 M H ₂ SO ₄	10 Wh kg ⁻¹	_	14
ALG-C	1 M H ₂ SO ₄	10 Wh kg ⁻¹	10 kW kg ⁻¹	5
rice husk	1 M Na ₂ SO ₄	10 Wh kg ⁻¹	1421W kg ⁻¹	9
Hierarchical porous carbon	1 M Na ₂ SO ₄	15.9 Wh kg ⁻¹	18.8 kW kg ⁻¹	15
Graphene/carbon black	6 M KOH	_	5.1 kW kg ⁻¹	16
tofu	1 M Na ₂ SO ₄	32.95 Wh kg ⁻¹	12.5 kW kg ⁻¹	This work

Table S5: Comparison of energy density and power density of various carbon materials

Figure S1 TG curves of Tofu powder

Figure S2 Comparison of the photograph of boat after carbonization

Temperature

LiNO₃ mass

Figure S3 The SEM and TEM images of NPC-650-0.25 (a and b), NPC-750-0.25 (c),

NPC-850-0.25 (d and e), NPC-750-0.15 (f and g) and NPC-750-0.35 (h and i),

respectively.

Figure S4 The XRD of carbon prepared at different temperature (a) and LiNO₃ mass

Figure S5 (a) FT-IR, (b) Raman and (c) BET of as-prepared samples, respectively.

Figure S6 High-resolution XPS sepctra of N 1s of NPC-750-0.15 (a), NPC-750-0.35

(b), NPC-650-0.25 (c) and NPC-850-0.25 (d), respectively.

Figure S7 CV and GCD curves of NPC-750-0.25 (a), NPC-750-0 (b), APC(c), and PC

(d), respectively.

Figure S8 CV and GCD curves of NPC-60-0.25(a), NPC-80-0.2 (b), NPC-750-0.15 (c)

and NPC-750-0.35 (d), respectively.

Figure S9 (a) The enlarged EIS of PC, APC, NPC-750-0 and NPC-750-0.25, the insert is the equivalent circuit diagram; Wetting angles of water droplet on PC (b)

APC (c), NPC-750-0 (d) and NPC-750-0.25 (e) substrates.

REFERENCES:

- W.-H. Qu, Y.-Y. Xu, A.-H. Lu, X.-Q. Zhang, W.-C. Li, Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes, *Bioresource Technology*, 2015, 189, 285-291.
- Z. Guo, Z.-y. Wang, H.-h. Wang, G.-q. Huang, M.-m. Li, Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–Au nanomaterials, *Materials Science and Engineering: C*, 2015, 57, 197-204.
- 3. H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for highperformance supercapacitors, *Journal of Power Sources*, 2016, **302**, 164-173.
- S. Hu, S. Zhang, N. Pan,Y.-L. Hsieh, High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, *Journal of Power Sources*, 2014, 270, 106-112.
- E. Raymundo-Piñero, F. Leroux, F. Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, *Advanced Materials*, 2006, 18, 1877-1882.
- 6. M. Sevilla, W. Gu, C. Falco, M. M. Titirici, A. B. Fuertes, G. Yushin,

Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors, *Journal of Power Sources*, 2014, **267**, 26-32.

- 7. Y. Fan, P. Liu, B. Zhu, S. Chen, K. Yao, R. Han, Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors, *International Journal of Hydrogen Energy*, 2015, **40**, 6188-6196.
- X. Liu, M. Zheng, Y. Xiao, Y. Yang, L. Yang, Y. Liu, B. Lei, H. Dong, H. Zhang, H. Fu, Microtube Bundle Carbon Derived from Paulownia Sawdust for Hybrid Supercapacitor Electrodes, *ACS Applied Materials & Interfaces*, 2013, 5, 4667-4677.
- A. Ganesan, R. Mukherjee, J. Raj,M. M. Shaijumon, Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage, *Journal of Porous Materials*, 2014, 21, 839-847.
- H. Wang, Z. Li, J. K. Tak, C. M. B. Holt, X. Tan, Z. Xu, B. S. Amirkhiz, D. Harfield, A. Anyia, T. Stephenson, D. Mitlin, Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste, *Carbon*, 2013, 57, 317-328.
- V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, B. Wei, Supercapacitors from Activated Carbon Derived from Banana Fibers, *Journal* of *Physical Chemistry C*, 2007, **111**, 7527-7531.
- T. E. Rufford, D. Hulicova-Jurcakova, Z. Zhu,G. Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, *Electrochemistry Communications*, 2008, 10, 1594-1597.

- E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds, *Advanced Functional Materials*, 2009, 19, 1032-1039.
- T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu,G. Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, *Journal* of Power Sources, 2010, **195**, 912-918.
- 15. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Threedimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors, *Carbon*, 2014, **67**, 119-127.
- G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors, *Small*, 2012, 8, 452-459.