Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information:

Understanding the advantage of hexagonal WO_3 as an efficient photoanode for solar water splitting: A first-principles perspective

Taehun Lee,^{a)} Yonghyuk Lee,^{a)} Woosun Jang, and Aloysius Soon^{b)} Global E³ Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea

(Dated: 22 June 2016)

^{a)}These authors contributed equally to this work.

^{b)}Corresponding author. E-mail: aloysius.soon@yonsei.ac.kr

TABLE S1. Surface free energies of various considered *h*-WO₃ surface structures with diverse orientations and terminations at corresponding stoichiometric ratio $R_{W/O}$, which is the ratio of the number of W atoms to that of oxygen in the surface structure. A stoichiometric surface will have $R_{W/O} = 2$. Surface energies at both the oxygen-lean (γ_O -lean) and oxygen-rich (γ_O -rich) limits are reported in eV/Å². Each surface unit cell (0001), (1010), and, (1120) areas correspond to 48.191, 28.607, and, 49.549 in Å².

Surfaces		$R_{ m W/O}$	$\gamma_{\rm O}$ -lean		$\gamma_{\rm O}$ -rich	
			relax	unrelax	relax	unrelax
(0001)	WO_6	0.316	0.175	0.201	0.078	0.105
	WO_5	0.353	0.011	0.074	0.108	0.170
	W_aO_6	0.304	0.205	0.219	0.097	0.111
	W_aO_5	0.333	0.041	0.106	0.041	0.106
	W_aO_4	0.368	0.048	0.104	0.157	0.213
$(10\bar{1}0)$	W_bO_6	0.314	0.198	0.228	0.089	0.120
	$W_{\rm b}O_{5a}$	0.355	0.014	0.089	0.123	0.197
	W_bO_{5b}	0.333	0.081	0.229	0.081	0.229
	W_bO_4	0.379	0.085	0.181	0.302	0.398
	W_aO_6	0.311	0.231	0.259	0.105	0.134
	W_aO_5	0.322	0.123	0.190	0.061	0.127
$(11\bar{2}0)$	W_aO_4	0.333	0.075	0.168	0.075	0.168
	W_bO_6	0.309	0.232	0.253	0.106	0.128
	W_bO_5	0.333	0.044	0.126	0.044	0.126
	W_bO_4	0.362	0.052	0.117	0.177	0.242

FIG. S1. (Color online) Surface structures of h-WO₃ before structural relaxation.

FIG. S2. (Color online) Surface structures of h-WO₃ after structural relaxation.

TABLE S2. PBE results of surface free energies in various considered h-WO₃ surface structures with diverse orientations and terminations at corresponding stoichiometric ratio $R_{W/O}$, which is the ratio of the number of W atoms to that of oxygen in the surface structure. A stoichiometric surface will have $R_{W/O} = 2$. Surface energies at both the oxygen-lean (γ_O -lean) and oxygen-rich (γ_O -rich) limits are reported in $eV/Å^2$. Each surface unit cell (0001), (1010), and, (1120) areas correspond to 48.287, 28.669, and, 49.656 in Å².

Surfaces		$R_{ m W/O}$	$\gamma_{\rm O}$ -lean		$\gamma_{\rm O}$ -rich	
			relax	unrelax	relax	unrelax
(0001)	WO_6	0.316	0.159	0.188	0.072	0.100
	WO_5	0.353	0.003	0.064	0.090	0.151
	W_aO_6	0.304	0.191	0.204	0.093	0.106
	W_aO_5	0.333	0.030	0.094	0.030	0.094
	W_aO_4	0.368	0.039	0.094	0.137	0.192
$(10\bar{1}0)$	W_bO_6	0.314	0.182	0.215	0.084	0.117
	W_bO_{5a}	0.355	0.001	0.078	0.099	0.176
	W_bO_{5b}	0.333	0.064	0.214	0.064	0.214
	W_bO_4	0.379	0.073	0.176	0.269	0.372
	W_aO_6	0.311	0.214	0.244	0.100	0.131
	W_aO_5	0.322	0.107	0.177	0.050	0.120
$(11\bar{2}0)$	W_aO_4	0.333	0.062	0.150	0.062	0.150
	W_bO_6	0.309	0.215	0.237	0.102	0.124
	W_bO_5	0.333	0.032	0.115	0.032	0.115
	W_bO_4	0.362	0.041	0.108	0.154	0.221

FIG. S3. (Color online) PBE results of calculated surface free energy (as a function of the change in the chemical potential of oxygen, $\Delta \mu_{\rm O}$) of most lowest low-index surfaces of *h*-WO₃, with the corresponding temperature and pressure are shown in lower panel. Relatively stable structures and less stable structures are depicted in color lines and in grey lines, respectively.

(1) Experimental correction

FIG. S4. (Color online) Methodologies of the corrections used in the manuscript for band edge positions of h-WO₃.