Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting information

Solution-processed small molecules with ethynylene bridges for

highly efficient organic solar cells

Yuanyuan Kan,^a Chang Liu,^a Lianjie Zhang,^a Ke Gao,^a Feng Liu,^{*b}

Junwu Chen*a and Yong Caoa

^a. Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of

Luminescent Materials & Devices, South China University of Technology, Guangzhou

510640, China

^b Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

**Correspondence - psjwchen@scut.edu.cn*

Contents

Figure S1. ¹H NMR and ¹³C NMR spectra of compound **2** in CDCl₃.

Figure S2. ¹H NMR and ¹³C NMR spectra of compound **3** in CDCl₃.

Figure S3. ¹H NMR (a) and ¹³C NMR (c) spectra of DPP-E-BDT in CDCl₃. ¹H NMR

spectrum (b) of the sample after exposure to the light and air for two months.

Figure S4. ¹H NMR (a) and ¹³C NMR (c) spectra of DPP-E-BDT-T in CDCl₃. ¹H NMR

spectrum (b) of the sample after exposure to the light and air for two months.

Figure S5. Mass (MALDI-TOF) spectrum of DPP-E-BDT.

Figure S6. Mass (MALDI-TOF) spectrum of DPP-E-BDT-T.

Figure S7. SCLC J^{1/2}-V characteristics of DPP-E-BDT and DPP-E-BDT-T based

active layers in hole-only (a) and electron-only (b) devices. Hole-only device:

ITO/PEDOT:PSS/active layer/MoO3/Al; electron-only device: ITO/ZnO/active layer/PFN/Al.

Table S1. Photovoltaic performances of the OSCs with different D:A ratios, based on the as-cast active layer films.

Table S2. Comparison of photovoltaic performances of the OSCs based on active layers fabricated with chlorobenzene or $CHCl_3$ as the solvent, where 0.4 v% DIO and thermal annealing at 100 °C for 10 min were applied.

Figure S1. ¹H NMR and ¹³C NMR spectra of compound **2** in CDCl₃.

Figure S2. ¹H NMR and ¹³C NMR spectra of compound **3** in CDCl₃.

Figure S3. ¹H NMR (a) and ¹³C NMR (c) spectra of DPP-E-BDT in CDCl₃. ¹H NMR spectrum (b) of the sample after exposure to the light and air for two months.

Figure S4. ¹H NMR (a) and ¹³C NMR (c) spectra of DPP-E-BDT-T in CDCl₃. ¹H NMR spectrum (b) of the sample after exposure to the light and air for two months.

Figure S5. Mass (MALDI-TOF) spectrum of DPP-E-BDT.

Figure S6. Mass (MALDI-TOF) spectrum of DPP-E-BDT-T.

Figure S7. SCLC *J*^{1/2}-*V* characteristics of DPP-E-BDT and DPP-E-BDT-T based active layers in hole-only (a) and electron-only (b) devices. Hole-only device: ITO/PEDOT:PSS/active layer/MoO3/Al; electron-only device: ITO/ZnO/active layer/PFN/Al.

Table S1. Photovoltaic performances of the OSCs with different D:A ratios, based on the as-cast active layer films.

Donor	D:A ratio	$V_{\rm oc}$	$J_{ m sc}$	FF	PCE	
		(V)	(mA/cm^2)	(%)	(%)	
DPP-E-BDT	2:1	0.84	5.59	49.6	2.33	
DPP-E-BDT-T	1:1	0.91	5.81	56.1	2.97	
	1:2	0.81	4.23	51.3	1.76	
	2:1	0.88	4.22	32.9	1.22	
	1:1	0.98	5.92	32.9	1.91	
	1:2	0.83	1.88	31.8	0.50	

Table S2. Comparison of photovoltaic performances of the OSCs based on active layers fabricated with chlorobenzene or $CHCl_3$ as the solvent, where 0.4 v% DIO and thermal annealing at 100 °C for 10 min were applied.

Donor	Solvent	V _{oc}	$J_{ m sc}$	FF	PCE
		(V)	(mA/cm^2)	(%)	(%)
DPP-E-BDT	Chlorobenzene	0.88	7.87	60.4	4.19
	CHCl ₃	0.92	7.45	54.6	3.74
DPP-E-BDT-T	Chlorobenzene	0.89	10.9	73.6	7.12
	CHCl ₃	0.89	9.46	68.3	5.75