ELECTRONIC SUPPLEMENTARY INFORMATION

Convenient synthesis of EDOT based dyes by CH-activation and their testing in dyesensitized solar cells

S. M. Abdalhadi,^a A. Connell,^b X. Zhang,^a A. A. Wiles,^a M. L. Davies,^c P. J. Holliman^{b*} and G. Cooke^{a*}

^a Glasgow Centre for Physical Organic Chemistry (GCPOC), WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K.

^b School of Chemistry, Bangor University, Bangor, Gwynedd, LL57 2UW, U.K.

^c SPECIFIC, Swansea University, Swansea, SA1 8EN, U.K.

*Correspondence - graeme.cooke@glasgow.ac.uk

1. Synthesis:

EDOT	Bz	DMA	Ligand	Solvent	Time	Yield
1 eq	1.2 eq	1.2 eq	PH(Cy) ₃ .BF ₄	DMF	24 hrs	27% ¹
2 eq	1 eq	1.5 eq	PH(Cy) ₃ .BF ₄	DMF	42 hrs	4%²
2 eq	1 eq	1.5 eq	PH(Cy) ₃ .BF ₄	THF	42 hrs	2
2 eq	1.5 eq	1 eq	PH(Cy) ₃ .BF ₄	DMF	42 hrs	43% ³
2 eq	1.5 eq	1 eq	PH(Cy) ₃ .BF ₄	THF	42 hrs	14% ³
2 eq	2 eq	1 eq	PH(<i>i</i> Pr) ₃ .BF ₄	DMF	42 hrs	51% ³
2 eq	2 eq	1 eq	PH(<i>t</i> Bu) ₃ .BF ₄	DMF	42 hrs	58% ³

 Table S1. One-pot C-H activation method development for the synthesis of compound 4a.

Bz: 4-Bromobenzaldehyde; DMA: 4-bromo-*N*,*N*-dimethylaniline; PivOH: pivalic acid; DMF: Dimethylformamide; THF: Tetrahydrofuran

All reactions were undertaken in an oven-dried flask flushed with Argon.

¹EDOT, Bz, DMA, Cs_2CO_3 (1.5 eq), PivOH (0.3 eq), Pd(OAc)₂ (10%), ligand (30%) were dissolved in the solvent and left to stir for 24 hrs at 100°C.

²Bz, EDOT, Cs_2CO_3 (2.5 eq), PivOH (40%), Pd(OAc)₂ (5%), ligand (15%) were dissolved in the solvent and initially left to react for 18 hrs. DMA was then added with Pd(OAc)₂ (5%) and ligand (15%) and the reaction was left to stir for 24 hrs at 100°C.

³DMA, EDOT, Cs_2CO_3 (2.5 eq), PivOH (40%), Pd(OAc)₂ (5%), ligand (15%) were dissolved in the solvent and initially left to react for 18 hrs. Bz was then added with Pd(OAc)₂ (5%) and ligand (15%) and the reaction was left to stir for 24 hrs at 100°C.

2. Electrochemistry:

Fig. S1 Square-wave voltammograms of the dyes (1 \times 10⁻⁵ M) recorded in DMF (V vs. Fc/Fc⁺).

3. Device manufacture and testing:

TiO₂ photo-anodes (0.5 x 2 cm) were prepared on TEC7[™] FTO glass (NSG) by doctor blading 2 layers of DSL18NR-T colloid (Dyesol) and then 1 layer of WER4-O scattering colloid (Dyesol). Each TiO₂ layer was sintered 500°C for 30 min prior to immersion in 50 mM solution of TiCl₄:THF₂ in DI water at 70°C for 30 min, rinsing and re-sintering at 500°C for 30min. Photo-anodes were dyed by immersion in 0.5mM THF solutions for 18h before rinsing with THF. Counter electrodes were platinized by depositing Pt colloid (Dyesol) on TEC8[™] glass predrilled with 2 fill holes 2cm apart and sintering at 400°C for 30min. The 2 electrodes were sealed together using Surlyn[™] (DuPont) at 120°C and the cavity filled with electrolyte (1-methyl-3-propyl-immidazolium iodide, Lil, I₂, benzimidazole and guanidine thiocyanate in acetonitrile. Fill holes were sealed with a glass cover slip and further Surlyn[™] at 120°C.

I-V data were measured with a Xe arc lamp solar simulator (ABET) and a Keithley 2400 at 1 Sun calibrated using a certified crystalline Si reference cell (Oriel 91150V). Spectral response was measured at 1 Sun on a QEX10 Quantum Efficiency Measurement System in

DC mode at 10 nm resolution.

Fig. S2 Normalised UV-vis spectra of (a) **EDOT-Ph**, (b) **EDOT-Fu** and (c) **EDOT-Th** adsorbed on transparent, mesoporous TiO₂ films with varying concentrations of CDCA; 0mM (solid line), 1mM (short dashes), 5mM (open circles), 10mM (closed circles), 15mM (black crosses) and 20mM (long dashes).

Fig. S2 cont. (d) Raw UV-vis spectral data of **EDOT-Ph** (green), **EDOT-Fu** (red) and **EDOT-Th** (blue) adsorbed on transparent, mesoporous TiO_2 films.

Fig. S3 EQE of N719 dyed DSSC device.

Fig. S4 (a) I-V data for EDOT dyes under illumination in the dark and replotted IV data for dark currents for (b) **EDOT-Ph**, (c) **EDOT-Fu** and (d) **EDOT-Th**. Key for all data = **EDOT-Ph** (solid line), (c) **EDOT-Fu** (dashed line) and (d) **EDOT-Th** (dot-dashed lines).

4. ¹H NMR spectra.

EDOT-Ph:

EDOT-Fu:

