Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary information

Improved sodium-ion storage performance in TiO₂ nanotubes by Ni²⁺ doping

Dong Yan, Caiyan Yu, Dongsheng Li, Xiaojie Zhang, Jiabao Li, Ting Lu*, Likun

Pan*

^a Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry

of Education, School of Physics and Materials Science, East China Normal University,

Shanghai 200062, China.

* Corresponding author. Tel: +86 21 62234132; Fax: +86 21 62234321. E-mail:

lkpan@phy.ecnu.edu.cn (Likun Pan); tlu@phy.ecnu.edu.cn (Ting Lu)

Fig. S1 TEM images of (a) TNTs and (b) NTNTs-2.

Fig. S2 SEM image of NTNTs-2 (a) and corresponding EDS mapping images of Ti

(b), O (c) and Ni (d).

Fig. S3 TEM image of NTNTs-2 (a) and corresponding EDS mapping images of Ti

(b), O (c) and Ni (d) in the area marked in (a).

tested in half cell.						
	Potential	Charge		Long-term		
Sampla	range	capacity at	Rate performance	cycling		
Sample	(V vs.	low current	(charge capacity)	Stability (charge		
	Na/Na ⁺)	density		capacity)		
NTNTs-2	0.005-3V	286 mAh g ⁻¹	286 mAh g ⁻¹ at 50 mA g ⁻¹	123 mA h g ⁻¹ after		
(This work)		at 50 mA g ⁻¹	247 mAh g ⁻¹ at 250mA g ⁻¹	2000 cycles at		
		after 100 cycles	214 mAh g ⁻¹ at 1A g ⁻¹	5 A g ⁻¹		
			165 mAh g ⁻¹ at 2 A g ⁻¹			
			122 mAh g ⁻¹ at 5 A g ⁻¹			
N-doped	0.005-3V	250 mAh g ⁻¹	400 mAh g ⁻¹ at 50 mA g ⁻¹			
graphene /TiO ₂		at 100 mA g ⁻¹	280 mAh g ⁻¹ at 100 mA g ⁻¹			
1		after 100 cycles	230 mAh g ⁻¹ at 300 mA g ⁻¹	/		
			200 mAh g ⁻¹ at 600 mA g ⁻¹			
			175 mAh g ⁻¹ at 1 A g ⁻¹			
Anatase TiO ₂	0.005-3V	150 mAh g ⁻¹	150 mAh g ⁻¹ at 0.11 C	100 mA h g ⁻¹ after		
nanoparticles ²		at 0.11C	140 mAh g ⁻¹ at 0.22 C	1000 cycles at		
		after 60 cycles	130 mAh g ⁻¹ at 0.55 C	1.845 A g ⁻¹ (5.5C)		
		(1C=369mA g-	120 mAh g ⁻¹ at 1.1 C			
		1)	100 mAh g ⁻¹ at 5.5 C			
			86 mAh g ⁻¹ at 11 C			
Anatase TiO ₂	0.005-3V	180 mAh g ⁻¹	150 mAh g ⁻¹ at 1 C			
nanorodes ³		at 10 mA g ⁻¹	130 mAh g ⁻¹ at 3 C			
		after 200 cycles	120 mAh g ⁻¹ at 5 C			
		(1C=330mA g-	90 mAh g ⁻¹ at 20 C	/		
		¹)	75 mAh g ⁻¹ at 50 C			
			60 mAh g ⁻¹ at 70 C			
			50 mAh g ⁻¹ at 100 C			
Amorphous	0.9 - 2.5V	140 mAh g ⁻¹	/	/		
TiO ₂ nanotube ⁴		at 50 mA g ⁻¹	/	/		
		after 15 cycles				
Anatase TiO ₂	0-2V	175 mAh g ⁻¹	174 mAh g ⁻¹ at 1 C	160 mAh g ⁻¹ after		
nanocubes ⁵		at 0.2 C	158 mAh g ⁻¹ at 2C	1000 cycles at 2C		
		after 40 cycles	132 mAh g ⁻¹ at 5 C			
		(1C=168mA g-	108 mAh g ⁻¹ at 10 C			
		1)	84 mAh g ⁻¹ at 20 C			
			68 mAh g ⁻¹ at 30 C			
			52 mAh g ⁻¹ at 50 C			
Nb-doped	0-2.5V	177mAh g ⁻¹	175 mAh g ⁻¹ at 0.1 C			
anatase TiO ₂ ⁶		at 0.1C after	165 mAh g ⁻¹ at 0.2 C	/		
		100 cycles	155 mAh g ⁻¹ at 0.5 C			

Table S1 Comparison of the performance of NTNTs-2 with reported TiO_2 for SIBs,

		(1C=330mA g-	145 mAh g ⁻¹ at 1 C	
		¹)	125 mAh g ⁻¹ at 2 C	
			100 mAh g ⁻¹ at 5 C	
Anatase TiO ₂	0.005-3V	194 mAh g ⁻¹	250 mAh g ⁻¹ at 20 mA g ⁻¹	
hollow		at 40 mA g ⁻¹	225 mAh g ⁻¹ at 40 mA g ⁻¹	
nanospheres ⁷		after 500 cycles	210 mAh g ⁻¹ at 160 mA g ⁻¹	/
			175 mAh g ⁻¹ at 320 mA g ⁻¹	
			125 mAh g ⁻¹ at 640 mA g ⁻¹	
Graphene/TiO ₂	0-2.5V	160 mAh g ⁻¹	210 mAh g ⁻¹ at 0.2 C	
nanofibers ⁸		at 1 C	175 mAh g ⁻¹ at 0.5 C	
		after 200 cycles	165 mAh g ⁻¹ at 1 C	1
		(1C=335mA g-	155 mAh g ⁻¹ at 2 C	/
		¹)	125 mAh g ⁻¹ at 5 C	
			95 mAh g ⁻¹ at 10 C	
TiO ₂ /graphene	0.05-3V	265 mAh g ⁻¹	265 mAh g ⁻¹ at 50 mA g ⁻¹	
nanocomposites		at 50 mA g ⁻¹	187 mAh g ⁻¹ at 200 mA g ⁻¹	00 m Ab at after
9		after 80 cycles	149 mAh g ⁻¹ at 500 mA g ⁻¹	4000 cycles at 500 mA g ⁻¹
			125 mAh g ⁻¹ at 1.5A g ⁻¹	
			114 mAh g ⁻¹ at 3 A g ⁻¹	
			102 mAh g ⁻¹ at 6 A g ⁻¹	
Carbon-coated	0-2V	227 mAh g ⁻¹	227 mAh g ⁻¹ at 0.1 C	175 mAh g ⁻¹ after
anatase TiO ₂ ¹⁰		at 0.1 C	215 mAh g ⁻¹ at 0.2 C	500 cycles at 5 C
		after 300 cycles	205 mAh g ⁻¹ at 0.5 C	
		(1C=335 mA g-	195 mAh g ⁻¹ at 1 C	
		¹)	175 mAh g ⁻¹ at 2 C	
			155 mAh g ⁻¹ at 5 C	
			135 mAh g ⁻¹ at 10 C	

References

- 1. H. A. Cha, H. M. Jeong and J. K. Kang, J. Mater. Chem. A, 2014, 2, 5182.
- L. Wu, D. Buchholz, D. Bresser, L. Gomes Chagas and S. Passerini, J. Power Sources, 2014, 251, 379-385.
- K. T. Kim, G. Ali, K. Y. Chung, C. S. Yoon, H. Yashiro, Y. K. Sun, J. Lu, K. Amine and S. T. Myung, *Nano Lett.*, 2014, 14, 416-422.
- 4. H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson and T. Rajh, J. Phys. Chem. Lett., 2011, 2, 2560-2565.
- X. Yang, C. Wang, Y. Yang, Y. Zhang, X. Jia, J. Chen and X. Ji, *J. Mater. Chem. A*, 2015, 3, 8800-8807.
- 6. F. Zhao, B. Wang, Y. Tang, H. Ge, Z. Huang and H. K. Liu, *J. Mater. Chem. A*, 2015, **3**, 22969-22974.
- 7. D. Su, S. Dou and G. Wang, Chem. Mater., 2015, 27, 6022-6029.
- 8. Y. Yeo, J. W. Jung, K. Park and I. D. Kim, *Sci. Rep.*, 2015, 5, 13862.

- 9. C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan and Y. Huang, *Nat. Commun.*, 2015, **6**, 6929.
- 10. M. N. Tahir, B. Oschmann, D. Buchholz, X. Dou, I. Lieberwirth, M. Panthöfer, W. Tremel, R. Zentel and S. Passerini, *Adv. Energy Mater.*, 2016, 6, 1501489.