Supporting Information

Power-Free Water Pump Based on Superhydrophobic Surface: Generation of Mushroom-Like Jet and Anti-Gravity Long-Distance Transport

Shuai Huang¹, Jinlong Song¹*, Yao Lu², Cunjing Lv³, Huanxi Zheng¹, Xin Liu¹, Zhuji Jin¹, Danyang Zhao¹, Claire J. Carmalt², Ivan P. Parkin²

1 Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China

2 Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK

3 Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt 64287, Germany

*Contact information: songjinlong@dlut.edu.cn

Fig. S1 Variation of contact angles with time at different pores' diameter. The water droplet with an initial volume 5 μ L was in an instable state with a gradually reduced contact angle, which as a function of the time exhibited a similar trend. The self-capturing time was decreasing with the increasing pore's diameter.

Table S1 The critical volume V_{cri} of water droplets on the superhydrophobic plate with different diameter of pore. V_{cri} refers to the critical volume when the contact line just reduced to the pore's diameter ($R_{cri} = r / \sin \theta_0$), and the critical volume V_{cri} is given by Equation (S1).

Pore's radius r / mm	Critical volume $V_{\rm cri}/\mu L$	Critical radius $R_{\rm cri}/{ m mm}$	Critical CA θ_0 / \circ
0.05	0.01	0.13	158°± 2°
0.15	0.27	0.40	$158^{\circ} \pm 2^{\circ}$
0.25	1.25	0.67	$158^{\circ} \pm 2^{\circ}$
0.35	3.42	0.93	158°± 2°

Fig. S2 Transportation speed as a function of the transportation height. Results indicated that the increase of transportation height *h* resulted in a dramatic decreased and was followed by a decrease gradually because the driving pressure was changed. As shown in Fig.S3, the total driving pressure P_{in} can be calculated as Equation (S2).

Fig. S3 Pressure analysis in the transportation process

$$P_{\rm in} = \Delta P - P_h \tag{S2}$$

Where $P_h = \rho gh$, the increase of *h* resulted in an increased P_h and was followed by a decrease of P_{in} . The self-capturing time of water droplet increases with the decreasing of driving force, resulting in a decreased transportation speed.

List of supplementary movies:

Movie S1: Generation processes of the mushroom-like jets under different working conditions and wettabilities. (pore diameter, 0.1mm; droplet volume, ~ 6.4μ L).

Movie S2: A time-lapsed video clip observed by a high-speed camera of the penetrating process of 5 μ L water droplets on the superhydrophobic plate under different pore diameter and playing speed (*d*=0.1 mm, ×0.3 speed; *d*=0.3 mm, ×0.025 speed; *d*=0.5 mm, ×0.0083 speed; *d*=0.7 mm, ×0.0083 speed; Δt is the capturing time).

Movie S3: Generation process of the multiple mushroom-like jets (pore diameter, 0.3mm; droplet volume, ~ 6.4μ L).

Movie S4: The experiment process of measuring sliding angles on the superhydrophobic surface and ordinary surface.

Movie S5: The antigravity transport process of the water pump (pore diameter, 0.1 mm; tube diameter, 1 mm; transport height, 144.6 mm).

Movie S6: Long distance transport process of the water pump (pore diameter, 0.3 mm; tube length, 1 m; tube diameter, 1 mm).