Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Ultrafine Co₂P Nanoparticles Encapsulated in Nitrogen and Phosphorus Dual-

doped Porous Carbon Nanosheet/Carbon Nanotube Hybrids: High-Performance

Bifunctional Electrocatalyst for Overall Water Splitting

Xinzhe Li, Yiyun Fang, Feng Li, Min Tian, Xuefeng Long, Jun Jin* and Jiantai Ma*

State Key Laboratory of Applied Organic Chemistry, The Key Laboratory of Catalytic Engineering of Gansu Province and Chemical Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. E-mail: jinjun@lzu.edu.cn, majiantai@lzu.edu.cn.

Fig. S1 SEM images of (a) Co₂P@N, P-PCN and (b) Co₂P@N, P-PCN/CNTs.

Fig. S2 HRTEM image of Co₂P@N, P-PCN/CNTs.

Fig. S3 EDX spectrum of Co₂P@N, P-PCN/CNTs.

Fig. S4 TEM image of Co₂P@N, P-PCN/CNTs.

Fig. S5 Size distribution histograms of Co₂P NPs.

Fig. S6 Wide-angle XRD patterns of CNTs and Co₂P@N, P-PCN/CNTs.

Fig. S7 LSVs curves for Co₂P@N, P-PCN/CNTs at five different mass loadings

in O₂-saturated 1.0 M KOH solution.

Fig. S8 (a) LSVs curves of Co₂P@N, P-PCN, Co₂P@N, P-PCN/CNTs_{5 wt%}, Co₂P@N, P-PCN/CNTs_{10 wt%}, Co₂P@N, P-PCN/CNTs_{20 wt%} and Co₂P@N, P-PCN/CNTs_{30 wt%} in an O₂-saturated 1.0 M KOH solution (scan rate 0.5 mV s⁻¹). (b) CNTs weight percentage-dependent over-potential (10 mAcm⁻²) and current density (E = 1.55 V) plots of the products.

Fig. S9 Chronopotentiometric response at a constant current density of 10.0 mA cm^{-2} recorded for Co₂P@N, P-PCN/CNTs and commercial IrO₂ catalyst.

Fig. S10 SEM and TEM characterizations of Co₂P@N, P-PCN/CNTs after the chronopotentiometry test.

Fig. S11 EIS Bode plots for Co₂P@N, P-PCN and Co₂P@N, P-PCN/CNTs. Bode plots show the information of impedance, frequency and phase angle. Fig. S11 were the Bode plots for the data in Fig. 5a. The axes of both impedance modulus |Z| and frequency (f) were logarithmic. The impedance of the system measured in the low frequency range is closely related to the polarization resistance (or R_{ct}), which is affected by the kinetics of the electrode reactions. As can be seen, the impedance at low-frequency range (10⁻² Hz) increased in the order CNTs-

 $Co_2P@N$, P-PCN/CNTs < $Co_2P@N$, P-PCN, which in accordance with the Nyquist plots.

Fig. S12 Chronopotentiometry curve of physically mixed $Co_2P@N$, P-PCN+CNTs at a current density of 10 mA cm⁻² in 1.0 M KOH.

Fig. S13 The photograph of overall water splitting powered by a battery with a nominal voltage of 1.5 V.

Table S1 XPS results of Co₂P@N, P-PCN/CNTs on the atomic percentages of C, O,

C (%)	O (%)	N (%)	P (%)	Co (%)	N distribution (%)			
					pyridinic N	pyrrolic N	graphitic N	oxygenated N
74.91	3.27	9.43	9.38	3.01	38.74	27.17	28.58	5.51

N, P and the Co distributions.

Table S2 Comparison of the OER activity for several recently reported highperformance OER catalysts.

Catalyst	Onset potential	η@10.0 mA cm ⁻²	Tafel slope	Electrolyte	Reference
	(V)	(V)	(mV dec ⁻¹)		
Co ₂ P@N, P-PCN/CNTs	1.46	0.28	49	1.0 M KOH	This work
Ni–Co ADHs nanocages	1.50	0.35	65	1.0 M KOH	1
Co-P/NC	~ 1.50	0.35	52	1.0 M KOH	2
N-doped graphene-CoO	~ 1.52	0.34	71	1.0 M KOH	3
CQDs/SnO ₂ Co ₃ O ₄	1.51	~0.33	60	1.0 M KOH	4
CuCo2O4/NrGO	~1.50	0.36	64	1.0 M KOH	5
Co ₃ O ₄ @C-MWCNTs	1.50	0.32	62	1.0 M KOH	6
Co _{0.5} Fe _{0.5} S@N-MC	1.6	0.64	159	1.0 M KOH	7
CNTs-Au@Co ₃ O ₄	1.52	0.35	68	1.0 M KOH	8
Au@Co ₃ O ₄ /C	1.52	0.38	60	0.1 M KOH	9
Zn _x Co _{3-x} O ₄ nanowire array	~ 1.50	0.32	51	1.0 M KOH	10

$Ni_xCo_{3-x}O_4$ nanowire	~ 1.58	~ 0.37	64	1.0 M KOH	11
Mn ₃ O ₄ /CoSe ₂	/	0.45	49	0.1 M KOH	12

Notes: For the convenience of comparison, the measure potentials vs. Ag/AgCl were converted to a reversible hydrogen electrode (RHE) scale accorting to the Nerst equation ($E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.198$).

Table S3 Comparison of HER performance in 1.0 M KOH solution for $Co_2P@N$, P-PCN/CNTs with other non-noble metal electrocatalysts.

Catalyst	Onset potential	η@10.0 mA cm ⁻²	Tafel slope	Reference
	(V)	(V)	(mV dec ⁻¹)	
Co ₂ P@N, P-PCN/CNTs	33	154	52	This work
MoC _x	25	151	59	13
CoNi@NC	~ 0	142	104	14
Cu ₃ P NW/CF	/	143	67	15
CoP/RGO	/	~ 250	104.8	16
Co ₂ P nanorods	70	134	71	17
CoO _x @CN	85	232	/	18
MoS _{2+x} /FTO	/	310	/	19
CoP/CC	/	209	129	20
Co-NRCNTs	100	370	/	21
FeP NAs/CC	~ 20	218	146	22

Catalyst	H _{OER} @10.0 mA cm ⁻²	H _{HER} @10.0 mA cm ⁻²	E (V) ^[1]	Reference
Co ₂ P@N, P-PCN/CNTs	280	154	1.64	This work
Ni ₅ P ₄	340	150	~ 1.7	23
CoO _x @CN	260	235	~ 1.3	18
NiFe LDH/Ni foam	240	210	1.7	24
PCPTF	~ 310	~ 380	/	25
CoP/rGO	340	150	1.7	26
Co-P film	345	94	~ 1.64	27
Co-P/NC	319	154	~ 1.71	2
NiSe/Ni foam	/	96	1.63	28
PNC/Co	~ 370	298	1.64	29

Table S4 Comparison of OER and HER performance in 1.0 M KOH solution for

Co₂P@N, P-PCN/CNTs with other non-noble metal bifunctional electrocatalysts.

Notes: [1] represents the overall water splitting overpotentials at 10 mA cm⁻².

References

- 1. J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang and L. Guo, *Adv. Energy Mater.*, 2015, **5**, 1401880.
- 2. B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, *Chem. Mater.*, 2015, **27**, 7636-7642.
- 3. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, **7**, 609-616.
- 4. S. Zhao, C. Li, J. Liu, N. Liu, S. Qiao, Y. Han, H. Huang, Y. Liu and Z. Kang, *Carbon*, 2015, **92**, 64-73.
- 5. S. K. Bikkarolla and P. Papakonstantinou, *J. Power Sources*, 2015, **281**, 243-251.
- 6. X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin and J. Ma, *J. Mater. Chem. A*, 2015, **3**, 17392-17402.
- 7. M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, *ACS Appl. Mater. Interfaces*, 2015, **7**, 1207-1218.
- Y. Fang, X. Li, Y. Hu, F. Li, X. Lin, M. Tian, X. An, Y. Fu, J. Jin and J. Ma, *J. Power Sources*, 2015, **300**, 285-293.

- 9. Z. Zhuang, W. Sheng and Y. Yan, *Adv. Mater.*, 2014, **26**, 3950-3955.
- 10. X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu and X. Sun, *Chem. Mater.*, 2014, **26**, 1889-1895.
- 11. Y. Li, P. Hasin and Y. Wu, *Adv. Mater.*, 2010, **22**, 1926-1929.
- 12. M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, *J. Am. Chem. Soc.*, 2012, **134**, 2930-2933.
- 13. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, *Nat. Commun.*, 2015, **6**, 6512.
- 14. J. Deng, P. Ren, D. Deng and X. Bao, Angew. Chem. Int. Ed., 2015, 54, 2100-2104.
- 15. J. Tian, Q. Liu, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 9577-9581.
- 16. L. Ma, X. Shen, H. Zhou, G. Zhu, Z. Ji and K. Chen, J. Mater. Chem. A, 2015, **3**, 5337-5343.
- 17. Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, **9**, 373-382.
- 18. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, **137**, 2688-2694.
- 19. C. G. Morales-Guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Gratzel and X. Hu, *Angew. Chem. Int. Ed.*, 2015, **54**, 664-667.
- 20. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 21. X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem.*, 2014, **53**, 4372-4376.
- 22. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065-4069.
- 23. M. Ledendecker, S. Krick Calderon, C. Papp, H. P. Steinruck, M. Antonietti and M. Shalom, *Angew. Chem. Int. Ed.*, 2015, **54**, 12361-12365.
- Jingshan Luo, Jeong-Hyeok Im, Matthew T. Mayer, Marcel Schreier, Mohammad Khaja Nazeeruddin, Nam-Gyu Park, S. David Tilley, Hong Jin Fan and M. Grätzel, *Science*, 2014, 345, 1593-1596.
- 25. Y. Yang, H. Fei, G. Ruan and J. M. Tour, *Adv. Mater.*, 2015, **27**, 3175-3180.
- 26. L. Jiao, Y.-X. Zhou and H.-L. Jiang, *Chem. Sci.*, 2016, **7**, 1690-1695.
- 27. N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
- 28. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, *Angew. Chem. Int. Ed.*, 2015, **54**, 9351-9355.
- 29. X. Li, Z. Niu, J. Jiang and L. Ai, *J. Mater. Chem. A*, 2016, **4**, 3204-3209.