Electronic Supplementary Information (ESI)

A highly active and durable CuPdPt/C electrocatalyst for an efficient

hydrogen evolution reaction

Tao Ding,^{abcd} Zhengyun Wang,^{abcd} Li Zhang,^{abcd} Chunde Wang,^{abcd} Yuan Sun,^{abcd} and Qing Yang^{*,abcd}

^aHefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, Anhui, P. R. China.

^bDepartment of Chemistry, USTC, Hefei 230026, Anhui, P. R. China.

^cLaboratory of Nanomaterials for Energy Conversion, USTC, Hefei 230026, Anhui, P. R. China.

^dSynergetic Innovation Center of Quantum Information & Quantum Physics, USTC, Hefei 230026, P. R. China.

*Corresponding author. E-mail: qyoung@ustc.edu.cn; Fax: +86-551-63606266; Tel: +86-551-63600243.

Fig. S1 The size-distribution histograms of the as-synthesized (a) CuPd and (b) CuPdPt nanocrystals.

Fig. S2 EDX line scan of the CuPdPt nanocrystals.

Fig. S3 EDX spectrum of the as-synthesized CuPdPt nanocrystals shown in Fig. 3. The signal of Al arises from the TEM grid made of elemental Al.

Analyses	Atomic ratio (%)				
	Pt	Pd	Cu		
EDX	6.10	64.80	29.10		
XPS	6.30	60.87	32.83		
ICP-AES	5.72	60.54	33.74		

Table. S1 Elemental Analyses of the CuPdPt nanocrystals by different analytical methods.

Fig. S4 HRTEM image and corresponding SEAD pattern of the CuPdPt nanocrystals.

Fig. S5 XPS survey spectrum (a) and the close-up spectra of C 1s (b), N 1s (d), O 1s (d) of the CuPdPt/C catalyst.

Fig. S6 The close-up XPS spectrum of Pt 4f in the commercial Pt/C (60 wt%).

Fig. S7 Raman spectrum of the as-prepared CuPdPt/C catalyst.

Catalyst	Electrolyte	Onset potential (mV)	Tafel slope (mV/dec)	η10 (mV)	Exchange current density(mA/cm ²)	Reference
Pt/BCF	0.5 M H ₂ SO ₄	N/A	32	55	N/A	<i>Catal. Today,</i> 2016, 262 , 141-145
PtFeCo TriStar	0.5 M H ₂ SO ₄	N/A	21/22/24 /25	N/A	N/A	Adv. Mater., 2016, 28 , 2077-2084
Pt-Ni/C	0.1 М КОН	N/A	59	N/A	N/A	J. Mater. Chem. A, 2016, 4 , 12392-12397
Pt ₁₃ Cu ₇₃ Ni ₁₄ /CNF@CF	1 M H ₂ SO ₄	N/A	38	N/A	N/A	ACS Appl. Mater. Interfaces, 2016, 8 , 3464-3472
Pt-Pd-rGO	0.5 M H ₂ SO ₄	N/A	10/22/25	N/A	N/A	Angew. Chem. Int. Ed., 2014, 53 , 12120-12124
Pt/MoS ₂	0.5 M H ₂ SO ₄	N/A	40	N/A	N/A	Nat. Commun., 2013, 4 , 1444
CuPdPt/C	0.5 M H ₂ SO ₄	~-25	25	55	0.07	Present work

Table S2 Comparison of the HER performance for the present CuPdPt/C catalyst with other recent reported Pt-based HER electrocatalysts.

Fig. S8 Nyquist plots of the CuPdPt/C and commercial Pt/C catalysts at an overpotential of 50 mV. Z' is real impedance, and Z'' is imaginary impedance.

Fig. S9 Durability test for the commercial 60 wt% Pt/C catalyst before and after iR-compensation, respectively.

Fig. S10 XRD pattern (a) and TEM images (b-d) of the spent catalyst after HER stability test.

Fig. S11 Comparison of XPS spectra for the catalyst before (black) and after (red) HER stability test: survey spectrum (a), spectra of Pt 4f (b), Pd 3d (c) and Cu 2p (d), respectively.

Fig. S12 TEM images of the CuPdPt nanocrystals directly loaded on Ti substrate after HER stability test.