Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

A polymer lithium-oxygen battery based on semi-polymeric conducting ionomer as polymer electrolyte

Chaolumen Wu^a, Chenbo Liao^a, Taoran Li^a, Yanqiong Shi^a, Jiangshui Luo^c, Lei Li^{a,b*}, Jun Yang^a

^a:Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China ^b:Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry &

Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China

^c: Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium

E-mai:lilei0323@sjtu.edu.cn

Figure S1 FT-IR spectra of PFSA membranes with H⁺ and Li⁺ forms.

FT-IR spectra of PFSA membranes with the H^+ and Li^+ forms are showed in Figure S3. In the PFSA with the H^+ form, the band at 970 cm⁻¹ was assigned to -SO₃H groups.^[S1] This band disappeared when the H^+ ions of the membranes were exchanged with Li^+ ions. The band at 1053 cm⁻¹ of the PFSA with H^+ form was attributed to the -SO₃⁻ symmetric stretch.^[S2,S3] Due to the interaction between Li^+ and oxygen, this band shifted to 1060 cm⁻¹ of the PFSA-Li membrane. These results verify the conversion of the PFSA membranes from the H^+ form to the Li^+ form in our experiments.

^{*} Corresponding author. E-mail address: lilei0323@sjtu.edu.cn (L. Li).

Figure S2 Voltage-time plots of Li|electrolyte|Li symmetrical cell cycled at 0.25 mA cm⁻² at room temperature. (A) 1M LiTFSI in DMSO conventional liquid electrolyte, (B) PFSA-Li swollen with DMSO polymer electrolyte.

The LiTFSI in DMSO conventional liquid electrolyte shows an unstable and irreversible response from several cycles (less than 10 hours) with a tendency to diverge to high voltage limit. It could hardly tolerate the applied current density and thus exhibit very limited operating electrode lifetime. However, the cell with the PFSA-Li polymer electrolyte shows an improvement with a lower over potential of about 50 mV and a long cycle life of 60 hours.

Figure S3 X-ray diffraction pattern of pristine MWCNTs cathode and MWCNTs electrode after discharged in Li-O_2 battery at 1.0 A g⁻¹.

Figure S4 Voltage profiles of the galvanostatic discharge of the lithium-oxygen polymer battery at different current densities and room temperature. The measurement has been repeated in order to determine the reproducibility of the test.

Figure S5 Discharge-charge voltage profiles of the batteries using PFSA-Li/DMSO (A) and PFSA-Li/DMSO+LiI (B) as polymer electrolytes measured at a current density of 1.0 A g^{-1} and a fixed capacity of 1000 mAh g^{-1}_{carbon} . 50 mM LiI was added to DMSO.

Figure S6 X-ray diffraction pattern of pristine MWCNTs cathode and MWCNTs electrode after discharged and charged in Li-O₂ battery with the PFSA-Li/DMSO+LiI polymer electrolyte.

We measured the discharge and charge products under the capacity of 1000mAhg⁻¹ with XRD, and the only discharge product is Li₂O₂, Which can clearly determine the I³⁻ is the midterm product and not the final product. After charging, there is no remaining particles. Thus, Li-O₂ battery with polymer electrolyte added LiI can exhibited good cycling stability with low overpotential.

Figure S7 Solid state ¹⁹F NMR spectrum of the PFSA-Li polymer before and after cycled (55 cycles at a current density of 1.0 A g^{-1} and a fixed capacity of 1000 mAh g^{-1}_{carbon} at room

temperature) in Li-O₂ battery.

Reference

- S1. R. Buzzoni, S. Bordiga, G. Ricchiardi, G. Spoto, A. Zecchina, J. Phys. Chem. 1995, 99, 11937.
- S2. M. Falk, Can. J. Chem. 1980, 58, 1495.
- S3. S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhöfer, H. J. Gores, *Electrochim. Acta* 2011, *56*, 3926.