Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary information for

Enhanced Decomposition of Sulfur Trioxide in the Water-Splitting Iodine-Sulfur Process via a Catalytic Membrane Reactor

Lie Meng, Masakoto Kanezashi, Xin Yu, and Toshinori Tsuru*

Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan E-mail: tsuru@hiroshima-u.ac.jp

Table of Contents			
Experimental	Page S2		
Fabrication of microporous silica membranes	Page S2		
Gas permeation measurement	Page S2		
Figure S1	Page S2		
Figure S2	Page S3		
Estimation of the effective molecular size of SO_3 via NKP	Page S4		
Table S1	Page S4		
SO3 decomposition in the catalytic membrane reactor	Page S4		
References	Page S5		

Experimental

Fabrication of microporous silica membranes

Porous SiO₂ glass tubular substrates with a pore diameter of 500 nm, an outside diameter of 8.5 mm and a length of 100 mm were employed as supports. Tetraethoxysilane (TEOS) was used as a silica precursor and was mixed with ethanol, followed by the addition of water and HCl to obtain a silica sol. The molar ratio of the above reagents (TEOS/H₂O/HCl) was controlled at 1/200/0.1, and the concentration of TEOS was kept at 0.05-1.0 wt%. The silica sol was deposited onto the porous substrates which were then calcined at 600 °C to form a thermally stable intermediate layer. For the separation top layer, the silica sol was coated onto the intermediate layer, followed by a calcination at 350 °C in air.

Gas permeation measurement

Single gas (He, H₂, N₂, CF₄ and SF₆) permeation testing was conducted using a setup schematically shown in Figure S1. The feed gas was introduced to the upstream of the membrane under a temperature that varied between 300 and 600 °C. The pressure at the retentate side was controlled with a pressure regulator while the permeate side was maintained at atmospheric pressure. The gas flow rates were obtained by film flow meters (SF-2U, Horiba, Japan).

Figure S1. Schematic diagram of the experimental setup for gas permeation and catalytic membrane reactor.

In the present study, SO₃ was generated from the oxidation of SO₂ at 400 °C with Pt/Al₂O₃ catalysts. The concentrations of SO₃ and SO₂ in mixed gas were determined using a Fourier transform infrared (FT-IR) analyzer (IRTracer-100, Shimadzu, Japan). Figure S2 shows the time-course of FT-IR analysis for O₂/SO₃ separation with a microporous silica membrane at 600 °C. First, SO₂ was detected when SO₂ and O₂ were mixed and introduced into the FT-IR analyzer. After feeding SO₂ and O₂ into the oxidation reactor, the peak height for SO₃ increased while that for SO₂ decreased to zero indicating that the SO₂ conversion reached 100%. The stable SO₃ flow was then introduced into the shell side of the membrane. By switching the 4-way valves, the FT-IR analyzer could be connected to either the retentate or the permeate side which offered a quick-response and stable measurement of SO₃ concentration in O₂/SO₃ mixed gas. The absorption trap filled with hydrogen peroxide (0.1 mol/L) was employed for trapping SO₃ and SO₂, while O₂ passed through the traps and was measured by a film flow meter.

Figure S2. Time-course of FT-IR analysis for O₂/SO₃ separation with a microporous silica membrane at 600 °C.

In binary-component gas permeation, the selective permeation causes a partial pressure distribution of the component along the membrane surface. Here, the logarithmic mean pressure difference for the component, i ($\Delta p_{i,lm}$) was employed to calculate the driving force for gas permeation:

$$\Delta p_{i,lm} = \frac{\Delta p_{i,in} - \Delta p_{i,out}}{\ln(\frac{\Delta p_{i,in}}{\Delta p_{i,out}})}$$
(1)

where $\Delta p_{i,in}$ and $\Delta p_{i,out}$ refer to the difference in the partial pressure of component *i* between the retentate and the permeate side at the inlet and at the outlet, respectively.

Estimation of the effective molecular size of SO3 via NKP

The normalized Knudsen-based permeance (NKP) method has been a useful tool for the determination of the average pore size of a microporous membrane, d_p ^[1-5]. NKP is the ratio of the permeance of component *i* to the permeance predicted using He, which is the smallest molecule, under the Knudsen diffusion mechanism, as expressed in Eq. (2).

$$NKP = \frac{P_i}{P_{He}} \frac{\sqrt{M_i}}{\sqrt{M_{He}}} = \frac{(d_p - d_{k,i})^3}{(d_p - d_{k,He})^3} \exp(-\frac{E_{P,i} - E_{P,He}}{RT})$$
(2)

where P_i , M_i , $E_{P,i}$, $d_{k,i}$ represent the gas permeance, molecular weight, activation energy and molecular size for the permeating components, respectively. Herein, the $E_{P,i}$ for different gases is assumed to be similar to $E_{P,He}$ due to the large pore size of the microporous silica membrane ^[3]. Thus, the membrane pore size, d_p , can be calculated by the following equation (Eq. (3)).

$$NKP = \frac{(d_p - d_{k,i})^3}{(d_p - d_{k,He})^3}$$
(3)

Table S1 summarizes the gas physical and permeation properties used for NKP calculation. These gas permeation data for the microporous silica membrane were measured at 600 °C. Based on Eq. (3), the NKP fitting curve that is based on the experimentally obtained NKP with a best fitted pore size (d_p) of 0.505 nm was plotted as a function of the molecular size of gas molecules. Then the effective molecular size of SO₃ permeates through the microporous membrane could be obtained by simply fitting the value of SO₃ permeance to the curve.

Gas	Molecular size [nm]	Molecular weight [g mol-1]	Permeance [10 ⁻⁸ mol m ⁻² s ⁻¹ Pa ⁻¹]	NKP
He	0.260	4.00	247.34	1.0000
O ₂	0.346	32.00	23.24	0.2657
N ₂	0.364	28.02	13.15	0.1407
SO ₂	0.429	64.07	3.15	0.5098
CF_4	0.480	88.00	0.81	0.1540
SO₃		80.07	0.94	

Table S1 Gas properties and NKP at 600 °C for the microporous silica membrane

SO3 decomposition in the catalytic membrane reactor

0.7 g Pt/Al₂O₃ catalysts were packed into the core side of the membrane. The temperature inside the membrane was maintained at 600 °C, and the membrane module was placed in an oven controlled at 150 °C to avoid any possible condensation. The flow rate of SO₃, O₂ in feed and O₂ as sweep gas in the permeate stream were 2.5, 43.6 and 8.8 ml/min, respectively. The pressure at the retentate side was controlled with a back-pressure regulator and pressurized from 130 to 140 kPa, while the permeate stream was kept at a

pressure of 108 kPa. SO₃ conversion (X) in the catalytic membrane reactor is defined as the percentage of reacted SO₃, and is expressed in the following equation:

$$X = \frac{F_{SO_3,0} - F_{SO_3,r} - F_{SO_3,p}}{F_{SO_3,0}}$$
(4)

where $F_{SO_3,0}$, $F_{SO_3,r}$, and $F_{SO_3,p}$ refer to the flow rates of SO₃ in the feed stream, at the outlet of retentate side and at the outlet of permeate side, respectively.

References

- 1. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, T. Tsuru, AIChE J., 2011, 57, 2755–2765.
- 2. H. Nagasawa, T. Niimi, M. Kanezashi, T. Yoshioka, T. Tsuru, AIChE J., 2014, 60, 4199–4210.
- 3. M. Kanezashi, M. Kawano, T. Yoshioka, T. Tsuru, Ind. Eng. Chem. Res., 2012, 51, 944–953.
- 4. L. Meng, M. Kanezashi, J. Wang, T. Tsuru, J. Membr. Sci., 2015, 496, 211–218.
- 5. M. Kanezashi, T. Matsutani, T. Wakihara, H. Tawarayama, H. Nagasawa, T. Yoshioka, T. Okubo, T. Tsuru, *ChemNanoMat*, 2016, **2**, 264–267.