Supporting Information

Photo-Assisted Synthesis of Au@PtAu Core-Shell Nanoparticles with Controllable Surface Composition for Methanol Electro-oxidation

Tiening Tan,^a Hao Xie,^b Jingjing Xie,^a Hang Ping,^a Bao-Lian Su,^{ac} Weimin Wang,^a Hao Wang,^a Zuhair A. Munir,^d and Zhengyi Fu^{*a}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China. E-mail: zyfu@whut.edu.cn

^b School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China

^c Laboratory of Inorganic Materials Chemistry, University of Namur, B-5000 Namur, Belgium

^d Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA

Table S1. Some reported mass activities of free-standing Pt-Au bimetallic nanomaterials for methanol electrooxidation

Materials	Electrolytes	Mass activities (A mg ⁻¹ Pt)	References
Pt-Au	0.5M CH ₃ OH+0.1M HClO ₄ 50mV/s	0.8	[1]
Au@PtAu _{0.5}	1M CH ₃ OH+0.1M HClO ₄ 50mV/s	0.76	Our work
Au ₃₀ -Pt _{array}	1M CH ₃ OH+0.5M H ₂ SO ₄	0.66	[2]
Pt-Au	1M CH ₃ OH+1M HClO ₄	0.625	[3]
Au-Pt alloyed nanowire	1M CH ₃ OH+0.5M H ₂ SO ₄ 50mV/s	0.58	[4]
Au-Pt core-rods	0.5M CH ₃ OH+0.5M H ₂ SO ₄	0.561	[5]
Au@Pt (Pt ₅ Au)	1M CH ₃ OH+0.5M H ₂ SO ₄ 20mV/s	0.45	[6]
Pt-on-Au	1M CH ₃ OH+0.5M H ₂ SO ₄ 50mV/s	~0.43	[7]
Pt _{0.81} Au _{0.19} alloy core-Pt shell	2M CH ₃ OH+0.1M H ₂ SO ₄	0.426	[8]
Pt-Au	?CH ₃ OH+0.1M HClO ₄	~0.38	[9]
Pt-Au alloy	0.5M CH ₃ OH+0.5M H ₂ SO ₄ 50mV/s	0.348	[10]
Au-Pt nanowire	1M CH ₃ OH+0.1M HClO ₄	~0.34	[11]
Au@Pt	2M CH ₃ OH+0.5M H ₂ SO ₄ 50mV/s	0.149	[12]
Au@Pt	0.5M CH ₃ OH+0.5M H ₂ SO ₄ 50mV/s	~0.115	[13]

Fig. S1 The XRD patterns of the as-prepared Au@PtAu_m NPs, with m: 0-1.1.

Fig. S2 The cyclic voltammetry curve (a) and current density (b) toward methanol electro-oxidation in 0.1M HClO₄ of Au@PtAu_{0.5} NPs prepared without photo-irradiation. The scan rates are 100mV/s and 50mV/s, respectively.

Fig. S3 Activity, durability and activity variation trend of $Au@PtAu_m$ NPs toward methanol electro-oxidation. (a) Current densities of $Au@PtAu_m$ NPs toward methanol electro-oxidation in 1M KOH at 50mV/s. (b) Catalytic activities (corresponding to the peak current densities) variation trend of the as-prepared $Au@PtAu_m$ NPs normalized either by Pt mass (red curve) or EASA of Pt and Au (blue curve). (c) Long term current-time curves measured in 1M KOH+1M CH₃OH at -0.2V vs. Ag/AgCl.

REFERENCES

[1] H. J. You, F. L. Zhang, Z. Liu and J. X. Fang, ACS Catal., 2014, 4, 2829-2835.

- [2] M. Y. Duan, R. Liang, N. Tian, Y. J. Li and E. S. Yeung, *Electrochim Acta*, 2013, 87, 432-437.
- [3] Z. H. Zhang, Y. Wang and X. G. Wang, Nanoscale, 2011, 3, 1663-1674.
- [4] P. Song, S. S. Li, L. L. He, J. J. Feng, L. Wu, S. X. Zhong and A. J. Wang, RSC Adv., 2015, 5, 87061-87068.

[5] L. Chen, L. Kuai and B. Y. Geng, 2013, 15, 2133-2136.

[6] Y. J. Li, W. C. Ding, M. R. Li, H. B. Xia, D. Y. Wang and X. T. Tao, J. Mater. Chem. A, 2015, 3, 368-376.

[7] S. J. Guo, J. Li, S. J. Dong and E. K. Wang, J. Phys. Chem. C, 2010, 114, 15337-15342.

[8] K. Mikkelsen, B. Cassidy, N. Hofstetter, L. Bergquist, A. Taylor and D. A. Rider, *Chem. Mater.*, 2014, 26, 6928-6940.

[9] J. Suntivich, Z. C. Xu, C. E. Carlton, J. Kim, B. H. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A.Gasteiger, K. Hamad-Schifferli and Y. Shao-Horn, *J. Am. Chem. Soc.*, 2013, **135**, 7985-7991.

[10] J. T. Zhang, H. Y. Ma, D. J. Zhang, P. P. Liu, F. Tian and Y. Ding, *Phys. Chem. Chem. Phys.*, 2008, **10**, 3250-3255.

[11] W. Hong, J. Wang and E. K. Wang, Small, 2014, 10, 3262-3265.

[12] Z. G. Guo, X. Zhang, H. Sun, X. P. Dai, Y. Yang, X. S. Li and T. T. Meng, *Electrochim Acta*, 2014, 134, 411-417.

[13] H. Ataee-Esfahani, L. Wang, Y. Nemoto and Y. Yamauchi, Chem. Mater., 2010, 22, 6310-6318.