Electronic Supplementary Materials

Three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution

Yunxiong Zeng^a, Chengbin Liu^{a,*}, Longlu Wang^a, Shuqu Zhang^a, Yangbin Ding^a,

Yuzi Xu^a, Yutang Liu^b, Shenglian Luo^{a,*}

Table S1 Atomic percentage obtained from XPS spectra of bulk $g-C_3N_4$ and $g-C_3N_4$ NB.

Samples	C (%)	N (%)	O (%)	C/N
bulk g-C ₃ N ₄	41.59	56.99	1.42	0.73
bulk g-C ₃ N ₄	42.32	53.08	4.60	0.80

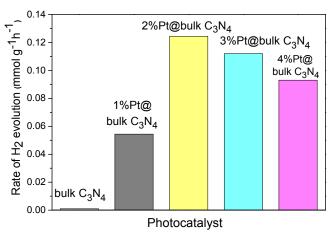


Fig. S1 HER of bulk g-C₃N₄ loaded with various content Pt under visible light (λ >420 nm) using 10% TEOA as sacrificial agent.

Determination of apparent quantum efficiency

The apparent quantum efficiency (AQE) for 3wt% Pt@g-C₃N₄ NB was measured under the same photocatalytic reaction condition and the incident light was supplied by a 300W Xe lamp with specific band-pass filters to get the desired incident wavelength (420 nm). The catalyst solution was irradiated for 10 hours. The average intensity of irradiation was determined to be $3.58 \text{ mW} \cdot \text{cm}^{-2}$ and the irradiation area was 5.96 cm^2 . The amount of H₂ molecules generated in 10 hours was 158.1 µmol. The quantum efficiency was calculated by Equation 1. The number of evolved H₂ molecules was calculated by Equation 2. The number of incident photons was 1.606×10^{21} as calculated by Equation 3.

$$AQE[\%] = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$$

$$= \frac{\text{Number of H}_2 \text{ molecules } \times 2}{\text{Number of incident photos}} \times 100 \text{ L L L L L L L (1)}$$

$$\text{Number of H}_2 \text{ molecules} = 6.02 \times 10^{23} \times 158.1 \times 10^{-6} = 7.89 \times 10^{19} \quad (2)$$

$$\text{Number of incident photons} = E\lambda/\text{hc} = (3.58 \times 10^{-3} \times 5.96 \times 3600 \times 10 \times 420 \times 10^{-9})$$

$$(6.626 \times 10^{-34} \times 3 \times 10^8) = 1.62 \times 10^{21} \quad (3)$$

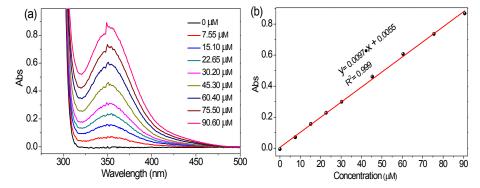
The calculated AQE at 420 nm is 12%.

Table S2. Comparison $g-C_3N_4$ based composites for visible-light-driven photocatalytic HER using sacrificial agent as electron donor.

/

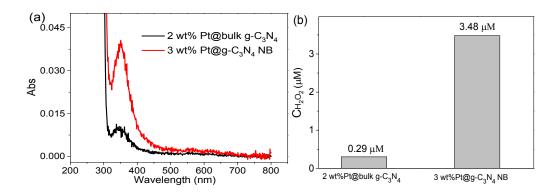
Photocatalysts	Light source	Sacrificial	Activity	AQE (%)
	Xe lamp (nm)	agent (vol %)	(mmol/g/h)	
$Pt/g-C_3N_4^{S1}$	$300W \lambda \ge 420$	10 % TEOA	0.375	-
$Pt/g-C_3N_4$ ^{S2}	$300W \lambda \ge 420$	10 % TEOA	1.150	-
$Pt/g-C_3N_4$ ^{S3}	$300W \lambda \ge 400$	10 % TEOA	0.640	-
$Pt/g-C_3N_4^{S4}$	$300W \lambda \ge 420$	10 % TEOA	0.230	-
$Pt/g-C_3N_4$ ⁸⁵	125W λ≥400	10 % TEOA	0.240	-
$Pt/g-C_3N_4$ ^{S6}	$300W \lambda \ge 420$	10 % TEOA	0.098	0.58% 440 nm)
$NiS/g-C_3N_4$ ^{S7}	$300W \lambda \ge 420$	15 % TEOA	0.482	4.4% (440nm)
Pt/BiPO ₄ /g-C ₃ N ₄ ^{S8}	$300W \lambda \ge 420$	10%methanol	1.110	-
Pt/g-PAN/g-C ₃ N ₄ ^{S9}	$300W \lambda \ge 400$	10 % TEOA	0.370	-
Ag_2O/g - C_3N_4 ^{S10}	$300W \lambda \ge 420$	10 % TEOA	0.330	-
$Pt/g-C_3N_4$ ^{S11}	$300W \lambda \ge 400$	10 % TEOA	0.604	-
$Pt/g-C_3N_4^{S12}$	$300W \lambda \ge 400$	11 % TEOA	1.510	5.7%
Pt/g-C ₃ N ₄	$300W \lambda \ge 420$	10 % TEOA	1.360	12%
(our work)				

H₂O₂ determination principle by the I₃⁻ method


 H_2O_2 determination was realized according to I_3 ⁻ strategy.^{S13} In detail, standard K_2MnO_4 solution (0.02M) was used to precisely titrate concentration of H_2O_2 according to equation (1):

$$2MnO_4^- + 5H_2O_2 + 6H^+ \longrightarrow 2Mn^{2-} + 8H_2O + 5O_2$$
(1)

Then prepare a suite of gradient concentration standard H_2O_2 solution. After added I⁻ anion completely reduces H_2O_2 molecule into H_2O in equation (2), and oxidation product I_3 ⁻ anion was quantitatively measured by UV-Vis spectra.


$$5H_2O_2 + 3I^- + 2H^+ \longrightarrow I_3^- + 2H_2O$$
 (2)

In the end, calculated the oxidation product H_2O_2 content derived from photocatalytic overall water splitting after centrifugation to remove photocatalyst.

Fig. S2 (a) UV-Vis spectra of I_3 by H_2O_2 oxidation and (b) linear fitting curve.

Accurate analysis of aqueous trace H_2O_2 concentration as low as μ M can be done by I₃⁻ method, based on the spectrophotometric determination of I₃⁻ formed when H_2O_2 added to a mixed concentrated solution of I⁻ and potassium acid phthalate. In the UV-Vis spectrum in Fig. S2a, maximum absorption peak at ca. 351 nm was unique characteristic peak of I₃⁻, thus in accordance with a series of gradient concentration I₃⁻ solution acquires Abs function I₃⁻ concentration in Fig. S2b.

Fig. S3 (a) UV-Vis spectra of I_3^- by H_2O_2 oxidation from photocatalytic overall water splitting of 3 wt%@g-C₃N₄ NB under visible light illumination (λ > 420 nm) and (b) corresponding H_2O_2 concentration. (Conditions: 20 mg photocatalyst, reaction hour: 1 hour)

Reference

S1. J. Li, B. Shen, Z. Hong, B. Lin, B. Gao and Y. Chen, Chem. Commun., 2012, 48, 12017-12019.

- S2. X. Lu, K. Xu, P. Chen, K. Jia, S. Liu and C. Wu, J. Mater. Chem. A, 2014, 2, 18924-18928.
- S3. P. Niu, L. Zhang, G. Liu and H.-M. Cheng, Adv. Funct. Mater., 2012, 22, 4763-4770.
- S4. J. Xu, L. Zhang, R. Shi and Y. Zhu, J. Mate. Chem. A, 2013, 1, 14766-14772.
- S5. S. Martha, A. Nashim and K. M. Parida, J. Mate. Chem. A, 2013, 1, 7816-7824.
- S6. Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, and T. Hirai, Chem.

Commun., 2014, 50, 15255-15258.

- S7. J. Hong, Y. Wang, Y. Wang, W. Zhang and R. Xu, ChemSusChem, 2013, 6, 2263-2268.
- S8. J. Yuan, Q. Gao, X. Li, Y. Liu, Y. Fang, S. Yang, F. Peng and X. Zhou, RSC Adv., 2014, 4, 52332-52337.
- S9. F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou and Y. Zheng, ACS appl. Mater. interfaces, 2014, 6, 7171-7179.
- S10. M. Wu, J. M. Yan, X. W. Zhang, M. Zhao, and Q. Jiang, J. Mate. Chem. A, 2015, 3, 15710-15714.
- S11. Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L. Song, J. Zhu, J. Jiang and Y. Xiong, *Adv.mater.*, 2016, 28, 6959-6965.
- S12. Y. Li, H. Xu, S. Ouyang, D. Lu, X. Wang, D. Wang, and J. Ye, J. Mate. Chem. A, 2016, 4, 2943-2950.
- S13. N. V. Kiassen, D. Marchington, and H. C. E. McGowan, Anal. Chem., 1994, 66, 2921-2925.