Electronic Supporting Information

Nb₂O₅ Quantum Dots embedded in ZIF-8 derived Nitrogen-Doped Porous Carbon Dodecahedrons for Advanced Hybrid Supercapacitors Applications

Sainan Liu^a, Jiang Zhou^{*a,b}, Zhenyang Cai^a, Guozhao Fang^a, Yangsheng Cai^a, Anqiang Pan^{a,b}, and Shuquan Liang^{*a,b}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China

^b Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, Hunan, China

Corresponding author: Tel.: +86 0731-88836069. Fax: +86 0731-88876692. E-mail address: <u>zhou_jiang@csu.edu.cn</u> (J. Zhou), <u>lsq@csu.edu.cn</u> (S. Liang)

Figures and Tables

Figure S1 Schematic illustration of the fabrication of NQD-NC.

Figure S2 TGA curve of the NQD-NC.

Figure S3 (a) N_2 adsorption-desorption isotherm for NQD-NC, (b) The corresponding pore size distribution.

Figure S4 SEM images of NQD/NC electrode after (a) 500 cycles, (b) 1000 cycles at the current density of 1 A g^{-1} .

Figure S5 CV curves of NQD-NC and pure Nb₂O₅ sample at sweep rates of 0.1 mV S⁻¹ in the potential range of 0.01-3.0 V (*vs. Li/Li*⁺).

Figure S6 Electrochemical performance of NC/Li half-cells in the potential range of 0.01-3.0 V (*vs.* Li/Li^+). (a) CV curves of NC at a sweep rates 0.1 mV S⁻¹, (b) The selected discharge-charge curves of NC at 0.5 A g⁻¹, (c) Cycling performance of NC at 0.5 A g⁻¹.

The electrochemical performance of NC at a scan rate 0.1 mV s⁻¹ in the voltage range of 0.01-3.0 V was evaluated in **Figure S6a**. The peaks of the first anodic scan are different from the second because of the formation of SEI and other side reactions. **Figure S6b** shows the discharge/charge profiles of the first three cycles for the NC at a current density of 0.5 A g⁻¹. The discharge curve in the first cycle is 851 mA h g⁻¹, while its first reversible specific capacity is only 455 mA h g⁻¹, an initial coulombic efficiency is only 53.5%. **Figure S6c** displays the cyclic stability of NC. After 150 cycles, the electrode maintains a discharge plateau of NC is between 0.01-0.5 V, it may contribute part of total capacity for NQD-NC nanocomposites in the voltage range of 0.01-3.0 V.

Figure S7 Electrochemical performance of NQD-NC/Li half-cells in the potential range of 0.01-3.0 V (*vs. Li/Li*⁺). (a) The first three CV curves of NQD-NC at sweep rates of 1 mV S⁻¹, (b) Rate performance (from 0.2-5 A g⁻¹) of NQD-NC and pure Nb₂O₅, (c) The selected discharge-charge curves at different current densities of 0.2, 0.5, 1, 2 and 5 A g⁻¹, (d) Galvanostatic charge-discharge profiles of NQD-NC at 0.5 A g⁻¹ and 1 A g⁻¹.

Figure S8 Electrochemical impedance spectroscopy of LIBs employing the NQD-NC composite and pure Nb_2O_5 anodes.

Figure S9 (a) CV curves at different scan rates between 2 and 20 mV S⁻¹ with potential range of 0.5–4.0 V, (b) Charge-discharge profile of NQD-NC/Li half-cells in the potential range of 0.01-3.0 V (*vs. Li/Li*⁺) at 0.2 A g⁻¹, (c) Charge-discharge profile of AC/Li half-cells in the voltage range of 2.5-4.0 V (*vs. Li/Li*⁺) at 0.2 A g⁻¹, (d) Charge-discharge profile of AC//NQD-NC hybrid supercapacitor in the voltage range of 0.5-4.0 V at 0.2 A g⁻¹, (e) Charge-discharge profiles of AC//NQD-NC HSCs device in the potential range of 0.5-4.0 V at different current densities of 0.2, 0.5, 1, 2 and 5 A g⁻¹, (f) Cycle stability for around 3000 cycles at the current density of 5 A g⁻¹.