Wire-on-flake Heterostructured Ternary Co_{0.5}Ni_{0.5}P/CC: An Efficient Hydrogen Evolution Electrocatalyst

Xiaoyan Zhang^{ab}, Wenling Gu^{ab} and Erkang Wang^{ab*}

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, Jilin 130022, China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding author, Email: ekwang@ciac.ac.cn, Tel: +86-431-85262003

KEYWORDS: Wire-on-flake Heterostructure, Ternary Co_{0.5}Ni_{0.5}P/CC, Self-supported electrode,

Hydrogen evolution

Figure S1. SEM images of $Co_{0.5}Ni_{0.5}P$ scratched from CC with different magnifications.

Figure S2. EDX spectrum for $Co_{0.5}Ni_{0.5}P/CC$.

Elements	Weight% (EDX)	Atomic% (EDX)	Atomic% (ICP-MS)
Со	33.13	25.48	25.91
Ni	33.73	26.04	25.35
Р	33.14	48.48	48.74
Total	100	100	100
Co:Ni:P		1:1.02:1.90	1.02:1:1.92

Table S1. Elements percentage of $Co_{0.5}Ni_{0.5}P/CC$ obtained from EDX and ICP-MS.

Figure S3. SEM images for (a) $Co_{0.75}Ni_{0.25}P/CC$, (b) $Co_{0.66}Ni_{0.33}P/CC$, (c) $Co_{0.33}Ni_{0.66}P/CC$ and (d) $Co_{0.25}Ni_{0.75}P/CC$. Inset in (a-d): SEM images of $Co_{0.75}Ni_{0.25}P/CC$, $Co_{0.66}Ni_{0.33}P/CC$, $Co_{0.33}Ni_{0.66}P/CC$ and $Co_{0.25}Ni_{0.75}P/CC$ with a larger magnification, respectively.

Figure S4. EDX spectra for $Co_{0.75}Ni_{0.25}P/CC$, $Co_{0.66}Ni_{0.33}P/CC$, $Co_{0.33}Ni_{0.66}P/CC$ and $Co_{0.25}Ni_{0.75}P/CC$, respectively.

Elements	Atomic% (EDX)						
	Co _{0.75} Ni _{0.25} P/C C	Co _{0.66} Ni _{0.33} P/C C	Co _{0.33} Ni _{0.66} P/C C	Co _{0.25} Ni _{0.75} P/C C			
Со	50.33	50.7	6.27	3.48			
Ni	36.86	32.57	21.14	14.71			
Р	12.81	16.73	72.59	81.81			
Total	100	100	100	100			
Co:Ni:P	2.88:1:4	1.95:1:3	3.4:11.6:1	4.23:23.5:1			

Table S2. Elements percentage of $Co_{0.75}Ni_{0.25}P/CC$, $Co_{0.66}Ni_{0.33}P/CC$, $Co_{0.33}Ni_{0.66}P/CC$ and $Co_{0.25}Ni_{0.75}P/CC$ obtained from EDX.

Figure S5. XRD spectra for NiP, CoP and $Co_{0.5}Ni_{0.5}P$ scratched from CC.

Figure S6. LSV curves for $Co_{0.5}Ni_{0.5}$ oxy-hydroxides/CC and $Co_{0.5}Ni_{0.5}P/CC$.

Figure S7. The amount of H_2 calculated by theory and measured from experiment versus time for $Co_{0.5}Ni_{0.5}P/CC$ in 0.5 M H_2SO_4 .

Figure S8. Time-dependent current density curves of $Co_{0.25}Ni_{0.75}P/CC$, $Co_{0.33}Ni_{0.66}P/CC$, $Co_{0.66}Ni_{0.33}P/CC$ and $Co_{0.75}Ni_{0.25}P/CC$ under a fixed overpotential of 90 mV for 14 h.

Figure S9. (a) and (b) SEM images of $Co_{0.5}Ni_{0.5}P/CC$ after time-dependent current density test under different magnifications.

Figure S10. (a) XPS characterization of $Co_{0.5}Ni_{0.5}P/CC$ and its corresponding (b) Co

2p, (c) Ni 2p and (d) P 2p spectra after time-dependent current density test.

Figure S11. XRD spectrum of $Co_{0.5}Ni_{0.5}P$ scratched from CC after time-dependent current density test.

Figure S12. (a) Polarization curves of $Co_{0.5}Ni_{0.5}P/CC$, CoP/CC and NiP/CC before and after 1000 CV cycles in (a) 0.5 M PBS and (b) 1.0 M KOH.

Figure S13. Cyclic voltammetry curves for (a) $Co_{0.25}Ni_{0.75}P/CC$, (b) $Co_{0.33}Ni_{0.66}P/CC$, (c) $Co_{0.75}Ni_{0.25}P/CC$ and (d) $Co_{0.66}Ni_{0.33}P/CC$ at different scan rates.

Catalant	Tafel slope	C _{dl}	Current density	Corresponding	Def	
Catalyst	(mV dec ⁻¹)	(mF cm ⁻²)	(mA cm ⁻²)	Overpotential (mV)	Ker	
			10	47	This	
Co _{0.5} Ni _{0.5} P/CC	34.1	74.7	100	96	work	
P-1T-MoS ₂	43	63.1	10	153	S 1	
			10	103	_	
Co ₂ P@NPG	58	66.8	20	129	S2	
Cu ₇ S ₄ @MoS ₂	48		10	133	S 3	
Co@BCN	63.7	83	10	96	S4	
Se-enriched NiSe ₂	32	10.93	10	117	S5	
CoPS	56	99.6	10	48	S 6	
Mo2C@NPC/NPRGO	30	17.9	10	34	S 7	
			10	138		
Co-C-N complex	55	400	100	212	S 8	
			10	137		
CoSe ₂ nanoparticle/CP	40	14.1	100	181	S9	
α-INS nanosheets	40		10	105	S10	

Table S3. Comparison of HER activity in acidic media for $Co_{0.5}Ni_{0.5}P/CC$ with otherexisted non-noble-metal electrocatalysts.

References

- Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song and S. Jin, *J. Am. Chem. Soc.*, 2016, 138, 7965-7972.
- M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu, Y. Ding, M. Shao and Z. Luo, *Nano Lett.*, 2016, 16, 4691-4698.
- J. Xu, J. Cui, C. Guo, Z. Zhao, R. Jiang, S. Xu, Z. Zhuang, Y. Huang, L. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2016, 55, 6502-6505.
- H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, ACS Nano, 2016, 10, 684-694.
- F. M. Wang, Y. C. Li, Tofik A. Shifa, K. L. Liu, F. Wang, Z. X. Wang, P. Xu, Q. S. Wang and J. He, *Angew. Chem. Int. Ed.*, 2016, 55, 6919-6924.
- M. Caban-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He and S. Jin, *Nat. Mater.*, 2015, 14, 1245-1251.
- J. S. Li, Y. Wang, C. H. Liu, S. L. Li, Y. G. Wang, L. Z. Dong, Z. H. Dai, Y. F. Li and Y. Q. Lan, *Nat. Commun.*, 2016, 7, 11204.
- Z. L. Wang, X. F. Hao, Z. Jiang, X. P. Sun, D. Xu, J. Wang, H. X. Zhong, F. L. Meng and X. B. Zhang, J. Am. Chem. Soc., 2015, 137, 15070-15073.
- 9. D. Kong, H. Wang, Z. Lu and Y. Cui, J. Am. Chem. Soc., 2014, 136, 4897-4900.
- X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo and S. Yang, J. Am. Chem. Soc., 2015, 137, 11900-11903.