Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016^{adjust margins}

Journal Name

SUPPORTING INFORMATION

Effect of annealing atmosphere on LiMn₂O₄ for thin film Li-ion Batteries from aqueous Chemical Solution Deposition.

Received 00th January 20xx, Accepted 00th January 20xx

G. Maino,^a J. D'Haen^b, F. Mattelaer^c, C. Detavernier^c, A. Hardy^{a,d} and M. K. Van Bael^{a,d}

a)

DOI: 10.1039/x0xx00000x

www.rsc.org/

Figure S1: Synthesis scheme of the aqueous precursor solution

Figure S2: a) TGA (Mass %), DTG (Derivative of mass) analysis of the dried citrate- Mn^{2+} , Li^{+} precursor gel. The analyses are performed in O_2 (solid line) and N_2 (dashed line).

^aUHasselt – Hasselt University, Institute for materials Research (IMO-IMOMEC), Inorganic and Physical Chemistry, Agoralaan, 3590 Diepenbeek, Belgium ^bHasselt University, Institute for Materials Research, Wetenschapspark 1, B-3590

Diepenbeek, Belgium c Gent University, Department Solid State Sciences, Krijgslaan 281 S1, 9000 Gent

(Belgium)

^dimec, division imomec, 3590 Diepenbeek, Belgium

200 Tempe 300 ature (°C) m/z 22 O, C) - m/z 22 N 0 300 4 Temperature (°C) m/z 43 O, e) m/z 43 N

m/z 17 O₂

m/z 17 N

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Figure S3 (a-i): TGA-MS profiles of the dried citrate- Mn^{2^+} , Li^+ precursor gel at 60°C, recorded in N₂ and O₂ at a heating rate of 10°C/min. Ions with m/z 17 (OH⁺, NH⁺₃) and 18 (H₂O⁺, NH⁺₄) are fragments related to water and ammonia. Ions with m/z 22 (CO₂⁺⁺), 44 (CO₂⁺⁻, H₂N-C=O⁺, C₃H₈⁺) and 45 (¹³CO₂⁺⁻) are fragments related to the carboxylate groups. Ions with m/z 30 (NO⁺, C₂H₆⁺, H₂N=CH₂⁺), 43 (HNCO⁺, C₂H₇⁺), 44 (CO₂⁺⁻, H₂N-C=O⁺), C₃H₈⁺) are fragments related to the interaction between carboxylic acid groups and NH₃. Ions with m/z 46 (NO₂⁺, C₂H₅OH⁺⁻) and 58 (C₃H₆O⁺⁻) together with previous ones (m/z 30, 43, 44) are fragments related to the citrate's skeleton. Only the most relevant fragments are shown and cited in the article. Note that each sub-figure has its own lon current scale.

It can be noted that fragments 30 (NO⁺, $C_2H_6^+$, $H_2N=CH_2^+$), 43 (HNCO⁺, $C_2H_7^+$) and 44 (CO₂⁺, $H_2N-C=O^+$) evolve at lower temperature in O_2 atmosphere (180-190°C) motivating partially the faster mass lost in oxidative atmosphere around the same temperature.

Figure S4: TEM images of powders obtained after calcining dried precursor gels at 450 °C for 1h in a) N_2 and b) O_2

Figure S5: XRD of film on Si/SiO₂/TiN/Pt substrate, heated at 450°C for 1h in N_2 . <u>Arrow</u> represents LiMn₂O₄ face centered cubic spinel phase (JCPDS 89-0117).

Figure S6: XRD of film on Si/SiO₂/TiN/Pt substrate, heated at 450°C for 1h in O_2 . <u>Arrow</u> represents LiMn₂O₄ face centered cubic spinel phase (JCPDS 89-0117), <u>square</u> represents gamma Mn₂O₃ tetragonal (JCPDS 06-0540).

Figure S7: SEM Pictures of films on Si/SiO₂/TiN/Pt, annealed in N₂ at 450°C

Figure S8: SEM Pictures of films on Si/SiO₂/TiN/Pt, annealed in O₂ at 450°C for 1h at 10°C/min.

Figure S9: In-situ XRD of spincoated films on Si substrate, recorded in N_2 and O_2 at a heating rate of 12 °C.min⁻¹. The reflection at 27,5°2 ϑ originates from a detector artifact.

Figure S10: Cyclic Voltammogram (first 5 cycles, 10mV/sec) of the films onto Si/Si/SiO2/TiN/Pt, after annealing at 800 °C for 3h in N_2

Figure S11: Cyclic Voltammogram (first 5 cycles, 10mV/sec) of the films onto Si/Si/SiO2/TiN/Pt, after annealing at 800 °C for 3h in O_2