Supporting Information

Co₉S₈ nanoparticles embedded in N, S co-doped grapheneunzipped carbon nanotubes composite as a high performance electrocatalyst for hydrogen evolution reaction

Mengbo Li^{a,b}, Haihui Zhou^{a,b}, Wenji Yang^{a,b}, Liang Chen^{a,b}, Zheng Huang^{a,b}, Ningshuang Zhang^{a,b}, Chaopeng Fu^{*a,b}, Yafei Kuang^{*a,b}

^aState Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University,

Changsha, 410082, PR China

^bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR

China

*Corresponding authors: Chaopeng Fu (fuchaopeng@hnu.edu.cn), Yafei Kuang (yafeik@163.com)

Synthesis of NG-UCNTs and RGO-UCNTs composites

For synthesis of NG-UCNTs, 10 mg of O-UCNTs and 50 mg of GO were dispersed in 30 mL of water, then 4 mmol of urea were added to the suspension. The suspension was sonicated for approximately 2 h at room temperature to achieve a homogeneous suspension, which was dried at 80 °C afterwards. The obtained mixture was thermal treated at 300 °C for 2 h with a heating rate of 2 °C min⁻¹ under N₂ atmosphere, then the temperature was elevated to 800 °C at a heating rate of 10 °C min⁻¹ and kept for another 1 h. For comparison, RGO-UCNTs composite was synthesized through the identical procedure but without the addition of urea.

Synthesis of Co₉S₈/NSG-UCNTs composite with different mass ratios of GO/O-UCNTs

60 mg mixture of GO and O-UCNTs, in which the weight ratio of GO/O-UCNTs was endowed with different values (1:0, 10:1, 3:1, 1:1, 1:3, 0:1), were dispersed in 30 mL of water, then 0.5 mmol of $Co(NO_3)_2 \cdot 6H_2O$ and 4 mmol of urea were added to the suspension. The suspension was sonicated for approximately 2 h at room temperature to achieve a homogeneous suspension, which was dried at 80 °C afterwards. The obtained mixture was thermal treated at 300 °C for 2 h with a heating rate of 2 °C min⁻¹ under N₂ atmosphere, then the temperature was elevated to 800 °C at a heating rate of 10 °C min⁻¹ and kept for another 1 h.

Figure S1 Raman spectra of GO, O-UCNTs, RGO-UCNTs, NG-UCNTs, NSG-UCNTs

Figure S2 Linear sweep voltammetry curves of Co₉S₈/NSG-UCNTs composites with

different mass ratios of GO/O-UCNTs

Figure S3 Linear sweep voltammetry curves of Co₉S₈/NSG-UCNTs composites with

different loading of Co(NO₃)₂

Figure S4 Linear sweep voltammetry curves of NSG-UCNTs, NG-UCNTs,

RGO-UCNTs measured in 0.5 M H₂SO₄

Figure S5 Cyclic voltammograms (0.48–0.58 V) of the Co_9S_8 in 0.5 M H_2SO_4 at various

scan rates

Table S1 Comparison of the electrocatalytic activity of Co_9S_8/NSG -CNT for HER in acid

media with some representative recently-reported non-noble metal electrocatalysts

Catalyst	Electrode	Electrolyte	Scan rate	Loading	η at various j	Reference
			(mV s-1)	(mgcm-2)	(mV)	
Co ₉ S ₈ /NSG-CNT	GCE	0.5 M H ₂ SO ₄	5	0.30	65(10)	This work
Co ₉ S ₈ @C	GCE	0.5 M H ₂ SO ₄	50	0.30	240(10)	1
CoS ₂ /RGO-CNT	GCE	0.5 M H ₂ SO ₄	2	0.28	142(10)	2
СоР	Ti foil	0.5 M H ₂ SO ₄	2	2.0	90(10)	3
CoS ₂	graphite	0.5 M H ₂ SO ₄	3	1.7 ± 0.3	145(10)	4
Fe _{0.37} Co _{0.63} S ₂ /CNT	GCE	0.5 M H ₂ SO ₄	1	0.4	120(20)	5
P-WN/rGO	GCE	0.5 M H ₂ SO ₄	5	0.337	85(10)	6
NCo@G	GCE	$0.5 \text{ M H}_2\text{SO}_4$	5	-	265(10)	7
Co@N-C	GCE	1 MHClO ₄	2	-	200(10)	8
MoS _x /NCNT	GCE	0.5 M H ₂ SO ₄	5	0.102	110(10)	9
NG-Mo	NG	$0.1 \text{ M H}_2\text{SO}_4$	-	0.70	140(10)	10
CoP/CNTs	GCE	0.5 M H ₂ SO ₄	5	0.285	130(10)	11
MoS ₂ NA/CC	CC	0.5 M H ₂ SO ₄	2	0.96	196(10)	12
Fe-Co ₂ P/NCNTs	GCE	0.5 M H ₂ SO ₄	5	0.2	104(10)	13
CoMoS	GCE	0.5 M H ₂ SO ₄	5	0.285	200(61.9)	14
Cu-MoS ₂ /rGO	GCE	0.5 M H ₂ SO ₄	5	0.285	400(83.6)	15
MoS ₂ /rGO	GCE	0.5 M H ₂ SO ₄	5	0.2	200(23)	16
MoS ₂ /rGO	GCE	0.5 M H ₂ SO ₄	2	0.285	200(40)	17
MoS ₃ /CNT	silver	1.0 M H ₂ SO ₄	1	1.6	300(75)	18
	electrode					
NiP ₂ NS/CC	СС	0.5 M H ₂ SO ₄	4	4.3	75(10)	19

References

- 1. L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang and X. Zou, *ACS Appl. Mater. interfaces*, 2015, **7**, 980-988.
- S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen and S. Ramakrishna, *Angew. Chem.*, 2014, **126**, 12802-12807.
- 3. Z. Pu, Q. Liu, P. Jiang, A. M. Asiri, A. Y. Obaid and X. Sun, *Chem.Mater.*, 2014, **26**, 4326-4329.
- M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding and S. Jin, *J. Am. Chem. Soc.*, 2014, **136**, 10053-10061.

- D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang and C.-W. Chen, *J. Am. Chem.Soc.*, 2015, **137**, 1587-1592.
- 6. H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao and H. Fu, *Angew. Chem.*, 2015, **127**, 6423-6427.
- H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li, E. L. Samuel and J. M. Tour, ACS Appl. Mater. interfaces, 2015, 7, 8083-8087.
- J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li and X. Bao, J. Mater. Chem. A., 2014, 2, 20067-20074
- 9. D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, *Nano Lett.*, 2014, **14**, 1228-1233.
- 10. S. Chen, J. Duan, Y. Tang, B. Jin and S. Z. Qiao, *Nano Energy.*, 2015, **11**, 11-18.
- Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem.*, 2014, **126**, 6828-6832.
- 12. Q. Kong, X. Wang, A. Tang, W. Duan and B. Liu, *Mater. Lett.*, 2016, **177**, 139-142.
- 13. Y. Pan, Y. Liu, Y. Lin and C. G. Liu, *ACS Appl. Mater. interfaces*, 2016, **8**, 13890-13901.
- X. Dai, K. Du, Z. Li, M. Liu, Y. Ma, H. Sun, X. Zhang and Y. Yang, ACS Appl. Mater. interfaces, 2015, 7, 27242-27253.
- F. Li, L. Zhang, J. Li, X. Lin, X. Li, Y. Fang, J. Huang, W. Li, M. Tian and J. Jin, *J. Power Sources*, 2015, 292, 15-22.
- 16. X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang and S. Yang, *Chem. Mate.*, 2014, **26**, 2344-2353.
- 17. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, **133**, 7296-7299.
- 18. T.-W. Lin, C.-J. Liu and J.-Y. Lin, *Appl. Catal., B: Environ.*, 2013, **134**, 75-82.
- 19. P. Jiang, Q. Liu and X. Sun, *Nanoscale*, 2014, **6**, 13440-13445.