Electronic Supplementary Information

Facile synthesis and electrochemistry of new cubic rocksalt $Li_xV_yO_2$

(x=0.78, y=0.75) electrode material

Wanqun Zhang,*^a jingjing Luo,^b xiaona Li,^b Jianwen Liang,^b Yongchun Zhu^b and Yitai Qian^b

^a School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China; ^b Division of Nanomaterials and chemistry, Hefei National Laboratory for Physical Sciences at MIcroscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, P. R.China.

* To whom correspondence should be addressed. E-mail:

<u>wqz@ustc.edu.cn</u>.

Table S1. Crystallographic parameters for as-prepared $Li_{0.78}V_{0.75}O_2$.

 $Fm\overline{3}m$. a = 4.3247(12)

Atom	Wyckoff	x/a	y/b	z/c	Biso o	occupancy	
	symbol						
Li	4a	0	0	0	2.69(6)	0.391(6)	
V	4a	0	0	0	2.69(6)	0.375(4)	
Ο	4b	0.5	0.5	0.5	1.85(4)	1	

R-factors: $R_{exp} = 6.02\%$, $R_{wp} = 6.16\%$, $R_p = 4.70\%$

Table S2. Crystallographic parameters for $Li_xV_yO_2$ obtained by annealing $Li_{0.78}V_{0.75}O_2$ at 800 °C in argon.

Atom	Wyckoff	x/a	v/b	z/c	Biso	occupancy
	symbol		J			F
Li	3a	0	0	0	3.1(3)	0.83(5)
V	3b	0	0	0.5	1.05(3)	0.77(3)
0	6c	0	0	0.24617(14)	2.144(5)	1

Table. S3. Comparison of $Li_{0.78}V_{0.75}O_2$ (this work) and various reported

 $R\overline{3}m$. a = 2.9659(7), c=14.910(3)

R-factors: $R_{exp} = 4.25\%$, $R_{wp} = 8.63\%$, $R_p = 6.16\%$

Material	Reversible	Rate	Ref
	capacity/mAh g ⁻¹		
Li _{0.78} V _{0.75} O ₂	500/500 th cycles	500 mA g ⁻¹	This work
Li _{1+0.2} VO ₂	294/25 th cycles	0.1 C	12
Li _{1.07} V _{0.93} O ₂	100/10 th cycles	10 mA g ⁻¹	22
Carbon-coat	150/20 th cycles	0.1 C	28
Li _{1.1} V _{0.9} O ₂			
Li _{1.075} V _{0.925} O ₂	\sim 175/30 th cycles	44 mA g ⁻¹	29

 $Li_xV_yO_2$ composites as anodes for Li-ion batteries.

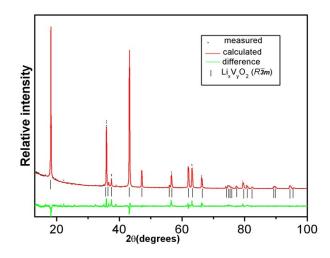


Fig. S1 Refined powder X-ray diffraction pattern for $\text{Li}_x V_y O_2$ obtained by annealing $\text{Li}_{0.78} V_{0.75} O_2$ at 800 °C in a following argon atmosphere. Dots represent observed data and solid line the calculated pattern. The lower line is the difference/esd.

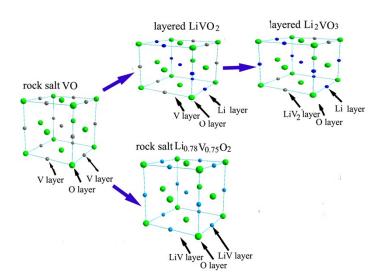


Fig. S2 Structural illustration of rock salt VO and $Li_{0.78}V_{0.75}O_2$, layered $LiVO_2$ and Li_2VO_3

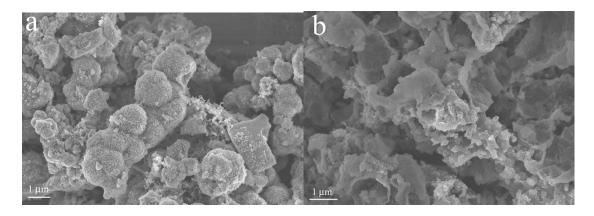


Fig. S3 FESEM images of $Li_{0.78}V_{0.75}O_2$ composite electrode after 40 (a) and 150 (b) electrochemical cycles at the current of 500 mA g⁻¹, respectively