2D porous Fe₂O₃/graphitic-C₃N₄/graphene ternary nanocomposite with multifunctions of catalytic hydrogenation, chromium(VI) adsorption and detoxification

Yu-Ting Zhuang, Ting-Ting Zhu, Man Ruan, Yong-Liang Yu* and Jian-Hua Wang*

Research Center for Analytical Sciences, College of Sciences, Northeastern

University, Box 332, Shenyang 110819, China

*Corresponding author.

E-mail: yuyl@mail.neu.edu.cn (Y.-L. Yu), jianhuajrz@mail.neu.edu.cn (J.-H. Wang).

Tel: +86 24 83688944; Fax: +86 24 83676698

Electronic Supplementary Information

Fig. S1 XRD pattern of PB/urea/GO and Joint Committee on Powder Diffraction Standards (JCPDS) card for PB.

Fig. S2 (a) TEM image of FeCNG-127, inset: HRTEM image of FeCNG-127 from the area labelled by the rectangular frame in (a); (b) HRTEM image of FeCNG-127 from the area labelled by the rectangular frame in (a), inset: particle size distribution of Fe_2O_3 particles in FeCNG-127.

Fig. S3 Nitrogen adsorption/desorption isotherms and pore size distributions of (a) GO, (b) FeCNG-127, (c) FeCNG-381 and (d) FeCNG-635.

Fig. S4 Element mapping images and EDS analysis of FeCNG-127.

Fig. S5 XRD patterns of FeCNG-127 and JCPDS cards for Fe_2O_3 , C_3N_4 and Graphite-2H.

Fig. S6 (a) FT-IR spectra of GO, C_3N_4 and FeCNG-127; (b) TGA curves of GO, C_3N_4 , FeCNG-127, FeCNG-381 and FeCNG-635 in N_2 atmosphere.

Fig. S7 (a) C 1s spectrum of FeCNG-127 before Cr(VI) adsorption; (b) N 1s spectrum of FeCNG-127 before Cr(VI) adsorption; (c) Fe 2p spectrum of FeCNG-127 before Cr(VI) adsorption; (d) XPS survey spectrum of FeCNG-127 after Cr(VI) adsorption;
(e) C 1s spectrum of FeCNG-127 after Cr(VI) adsorption; (f) N 1s spectrum of FeCNG-127 after Cr(VI) adsorption; (g) Fe 2p spectrum of FeCNG-127 after Cr(VI) adsorption.

Fig. S8 (a) Time-dependent absorption spectra for the catalytic reduction of 4-NP by NaBH₄ in the presence of 1 mg of different catalysts: (a) FeCNG-381, (b) FeCNG-635 and (c) rGO-127; (d) Adsorption rate of the catalytic reduction of 4-NP by NaBH₄ in the presence of 1 mg of different catalysts. Conditions: 4-NP: 0.005M; NaBH₄: 0.02M; 25°C.

Fig. S9 (a) Variation of the final pH after immersion of FeCNG-127 into aqueous solutions with different pH values; (b) Effect of NaCl on the adsorption of Cr(VI) by FeCNG-127. Conditions: adsorbent dosage: 0.5 g L⁻¹; Cr(VI) concentration: 5 mg L⁻¹; shaking speed: 70 rpm; contact time: 6 h.

Fig. S10 Effect of recycling number on the adsorption of Cr(VI) by FeCNG-127. Conditions: adsorbent dosage: 0.5 g L⁻¹; Cr(VI) concentration: 5 mg L⁻¹; shaking speed: 70 rpm; contact time: 6 h.

Scheme S1 Speculated mechanisms for the adsorption of Cr(VI) by FeCNG.

Catalyst	Dosage (mg)	k (min ⁻¹)	Ref.
Co _{0.85} Se-Fe ₃ O ₄ nanocomposite	1	0.393	[1]
Ni/graphene nanostructure	3	0.702	[2]
Nickel/nanoporous carbon composite	0.3	0.168	[3]
NiCo ₂ alloy	1	0.0735	[4]
Alloyed Cu/Ag bimetallic nanoparticles	2	0.237	[5]
Au-Fe ₃ O ₄ hybrid nanoparticles	1	0.629	[6]
FeCNG-127	1	1.11	This work

 Table S1 Comparison of catalytic performance of recently reported catalysts towards

 p-nitrophenol reduction.

Table S2 Adsorption kinetics fitting results for Cr(VI) adsorption on FeCNG-127 by pseudo-first-order and pseudo-second-order.

Pseudo-first-order model		Pseudo-second-order model			
Q _e (mg g ⁻¹)	k_1 (min ⁻¹)	R ²	Q _e (mg g ⁻¹)	k ₂ [g (mg min) ⁻¹]	R ²
3.03	0.00516	0.8548	10.2	0.00926	0.9993

References

- 1 J. M. Song, S. S. Zhang and S. H. Yu, *Small*, 2014, **10**, 717-724.
- Y. G. Wu, M. Wen, Q. S. Wu and H. Fang, J. Phys. Chem. C, 2014, 118, 6307-6313.
- 3 Y. Yang, Y. Zhang, C. J. Sun, X. Li, W. Zhang, X. Ma, Y. Ren and X. Zhang, *ChemCatChem*, 2014, 6, 3084-3090.
- K. L. Wu, X. W. Wei, X. M. Zhou, D. H. Wu, X. W. Liu, Y. Ye and Q. Wang, J.
 Phys. Chem. C, 2011, **115**, 16268-16274.
- W. Wu, M. Lei, S. Yang, L. Zhou, L. Liu, X. Xiao, C. Jiang and V. A. L. Roy, J.
 Mater. Chem. A, 2015, 3, 3450-3455.
- 6 X. W. Meng, B. Li, X. L. Ren, L. F. Tan, Z. B. Huang and F. Q. Tang, *J. Mater. Chem. A*, 2013, **1**, 10513-10517.