Electronic Supplementary Information

Multifunctional Porous Organic Polymers Embedded with Magnetic Nanoparticles

Shanlin Qiao,^{a,b} Wei Huang,^c Ting Wang,^c Bin Du,^{*,a} Xiangning Chen,^a Abdul Hameed,^d Rengiang Yang^{*,c}

^a Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.

^b Institute of Chemical Industry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China

^c CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess
Technology, Chinese Academy of Sciences, Qingdao 266101, China.
^d CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center

for Nanoscience and Technology, Beijing 100190, China.

* E-mail: bindu80@bua.edu.cn (B. D.), yangrq@qibebt.ac.cn (R. Y.)

Figure S1. (a-f) FT-IR spectra of Fe₃O₄ NPs, Fe₃O₄@CaCO₃, and Fe₃O₄@CMPs.

Figure S2. Solid state ¹³C CP/MAS NMR of PVK (a) and pure CMPs (b).

Figure S3. TGA of Fe₃O₄ NPs.

Figure S4. (a-d) UV-vis absorption spectra of $Fe_3O_4@CMPs$.

Figure S5. (a-d) Powder XRD patterns of Fe₃O₄@CMPs.

Figure S6. Particle size distribution of the Fe₃O₄@CMPs. (a) 10%Fe₃O₄@CMPs, (b)

20%Fe₃O₄@CMPs, (c) 30%Fe₃O₄@CMPs, and (d) 40%Fe₃O₄@CMPs.

Figure S7. SEM images of Fe₃O₄@CMPs. (a) 10%Fe₃O₄@CMPs, (b) 20%Fe₃O₄@CMPs,

(c) 30%Fe₃O₄@CMPs, and (d) 40%Fe₃O₄@CMPs.

Figure S8. TEM images of Fe_3O_4 NPs core size dimension in bulk materials. (a)

10%Fe₃O₄@CMPs, (b) 20%Fe₃O₄@CMPs, (c) 30%Fe₃O₄@CMPs, and (d) 40%

Fe₃O₄@CMPs.

Figure S9. TEM images of holes dimension in bulk materials after etched by acetic

acid solution. (a) 10%Fe₃O₄@CMPs, (b) 20%Fe₃O₄@CMPs, (c) 30%Fe₃O₄@CMPs, and

(d) 40%Fe₃O₄@CMPs.

Figure S10. Pore size distribution calculated using nonlocal density functional theory of (a) Fe_3O_4 NPs, (b) pure CMPs and (c-f) composite materials.

Figure S11. Hysteresis loops of Fe₃O₄ NPs, Fe₃O₄@CaCO₃, and Fe₃O₄@CMPs.

Figure S12. CO₂ adsorption and desorption isotherms at 273 K.

	Fe ₃ O ₄	10% Fe ₃ O ₄	20% Fe ₃ O ₄	30% Fe ₃ O ₄	40% Fe ₃ O ₄	pure CMPs
BET ^a	102	735	680	636	518	878
pore volume ^b	0.26	1.43	1.24	0.95	0.78	1.00
pore size ^c	11.44	0.57	0.52	0.57	0.59	0.54

Table S1 Porosity properties of $Fe_3O_4@CMPs$ compared with Fe_3O_4 and pure CMPs

a Surface area calculated from N_2 isotherm (m² g $^{\text{-}1}$).

b total pore volume at $P/P_0 = 0.99$ (cm³ g⁻¹).

c major pore size (nm).

Table S2 Adsorbing capacity of lab solvents

Solvent	10%Fe ₃ O ₄	20%Fe ₃ O ₄	30%Fe ₃ O ₄	40%Fe ₃ O ₄
Solvent	@CMPs (%)	@CMPs (%)	@CMPs (%)	@CMPs (%)
THF	1167	1136	1050	967
Ethyl acetate	1180	1152	926	857
Toluene	1170	1100	1002	906
Methanol	860	834	672	640
Hexane	500	447	390	356
Dichloromethane	1480	1400	1320	1190
Chloroform	1600	1441	1364	1285
Chlorobenzene	1298	1200	1120	1030
1,2-Dichlorobenzene	1633	1540	1480	1380