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Supplementary Figures

Fig. S1 TGA curve of PVP in high purity Ar atmosphere from room temperature to 600 °C 
with a heating rate of 5 °C min-1.

The only 2.3% weight loss observed until 365 °C is attributed to the evaporation of adsorbed 

water. This indicates that PVP is stable in inert atmosphere up to 365 °C. The fast weight loss 

from 365 to 460 °C is assigned to the decomposition and carbonization of PVP. The residual 

carbon mass is about 13.5% of the pristine PVP mass.

Fig. S2 (a) TEM and (b) HRTEM images of the blank porous carbon nannofibers fabricated 
by heat treating the electrospun PVP at 500 °C for 1 h.
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Fig. S3 SEM images of the as-spun GO/PVP nanofibers prepared from different spinning 
solutions: 15 mL, 20 mL, and 25 mL GO/H2O dispersion with 1.2 g PVP.

The nanofibers electrospun from 15 mL GO/H2O with 1.2 g PVP are thinner than those from 

20 mL GO/H2O with 1.2 g PVP, due to the insufficient GO content. While, excessive GO 

cannot be totally wrapped by PVP nanofibers (25 mL GO/H2O with 1.2 g PVP). Appropriate 

dosage ratio (20 mL GO/H2O with 1.2 g PVP) is very important for obtaining the smooth and 

continuous precursor nanofibers.

Fig. S4 SEM images of the carbonized GO/PVP nanofibers after calcination at 400, 500, and 
600 °C for 1 h.

The nanofibers calcinated at 400 °C are thicker than those calcinated at 500 °C, suggesting 

that a low temperature cannot completely decompose the PVP to carbon (consistent with the 

thermogravimetric analysis in Fig. S1). While, a high temperature (600 °C) results in 

aggregated large areas of graphene that is coated on the surface of carbon nanofibers. 

Consequently, 500 °C is the best carbonization temperature.
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Fig. S5 TEM images of the carbonized GO/PVP nanofibers after calcination at 500 °C for 0.5, 
1, and 2 h.

The graphene nanoflakes calcinated for 0.5 h are not in full bloom compared with those 

calcinated for 1 h. While, a long calcinating time (2 h) leads to the agglomeration of graphene 

that is extended beyond the carbon nanofibers. Therefore, 1 h is the best carbonization time.

Determination of the graphene percentage in the G/C composite

In the electrospinning fluid, 20 mL GO/H2O dispersion (concentration: 5 mg mL-1) contains 

100 mg GO, in which the oxygen content is 30.76 mg and the carbon content is 69.24 mg. 

After the heat treatment, assuming the G/C mass is x mg, thereby the oxygen content is 

x×2.93% mg, and the carbon content is x×(1-2.93%) mg. Considering 1.2 g PVP results in 

162 mg (1200 mg×13.5 %) carbon nanofibers, it can be concluded that x×(1-2.93%) = 69.24 + 

162 mg, so x = 238.22 mg. Therefore, the graphene percentage in the G/C composite is 

calculated to be about 32 wt% ((238.22-162)/238.22).

Fig. S6 (a) N2 adsorption-desorption isotherm and (b) pore size distribution curve of the pure 
graphene.
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Fig. S7 SEM images of the pure graphene nanosheets and carbon nanofibers.

Fig. S8 Cycling performance of the G/C electrode in FEC-free NaClO4/PC electrolyte tested 
between 0.01-2.5 V vs Na+/Na at a current density of 100 mA g-1.

The initial discharge and charge capacities are 765 and 428.6 mA h g-1, respectively. While 

the reversible capacity decreases rapidly to 368.1 mA h g-1 in the 20th cycle, and retains only 

346.5 mA h g-1 after 100 cycles.
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Fig. S9 (a) SEM, (b) TEM, and (c) HRTEM images of the G/C electrode charged at 2.5 V 
after 300 cycles tested as Fig. 5d.

Fig. S10 SEM image of the G/C electrode charged at 2.5 V after 1000 cycles tested at 2000 
mA g-1.
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Table S1 Comparison of the results in this study with reported performance of the carbon-
based materials (including hard carbon, graphene, graphite, heteroatom-doped carbon, and 
their composites) as SIB anodes.

Sample Rate capability Cyclic stability Reference

Carbonized peat moss

306 mA h g-1 at 50 mA g-1

298 mA h g-1 at 100 mA g-1

203 mA h g-1 at 500 mA g-1

150 mA h g-1 at 1000 mA g-1

106 mA h g-1 at 2000 mA g-1

66 mA h g-1 at 5000 mA g-1

255 mA h g-1 at 100 mA g-1

(200 cycles) 1

Reduced graphene 
oxide

217.2 mA h g-1 at 40 mA g-1

176.4 mA h g-1 at 80 mA g-1

150.9 mA h g-1 at 200 mA g-1

118.7 mA h g-1 at 400 mA g-1

95.6 mA h g-1 at 1000 mA g-1

174.3 mA h g-1 at 40 mA g-1

93.3 mA h g-1 at 200 mA g-1

(250 cycles)
141 mA h g-1 at 40 mA g-1

(1000 cycles)

2

Expanded graphite
284 mA h g-1 at 20 mA g-1

184 mA h g-1 at 100 mA g-1

91 mA h g-1 at 200 mA g-1

73.92% capacity retention at 
100 mA g-1 (2000 cycles) 3

Hollow carbon 
nanospheres

223 mA h g-1 at 50 mA g-1

168 mA h g-1 at 200 mA g-1

142 mA h g-1 at 500 mA g-1

120 mA h g-1 at 1000 mA g-1

100 mA h g-1 at 2000 mA g-1

75 mA h g-1 at 5000 mA g-1

~50 mA h g-1 at 10000 mA g-1

~160 mA h g-1 at 100 mA g-1

(100 cycles) 4

Microporous carbon 
nanospheres

223 mA h g-1 at 20 mA g-1

190 mA h g-1 at 200 mA g-1

130 mA h g-1 at 100 mA g-1

98 mA h g-1 at 200 mA g-1

85 mA h g-1 at 400 mA g-1

67 mA h g-1 at 1000 mA g-1

115 mA h g-1 at 200 mA g-1

(1000 cycles) 5

Sandwich-like 
hierarchically carbon 
/graphene composite

670 mA h g-1 at 50 mA g-1

400 mA h g-1 at 50 mA g-1

(100 cycles)
250 mA h g-1 at 1000 mA g-1

(1000 cycles)

6

3D nitrogen-doped 
graphene foams

1057.1 mA h g-1 at 100 mA g-1

943.5 mA h g-1 at 200 mA g-1

815.2 mA h g-1 at 500 mA g-1

467.1 mA h g-1 at 1000 mA g-1

244.7 mA h g-1 at 2000 mA g-1

137.7 mA h g-1 at 5000 mA g-1

594 mA h g-1 at 500 mA g-1

(150 cycles) 7

3D porous carbon 
frameworks

290 mA h g-1 at 200 mA g-1

253 mA h g-1 at 500 mA g-1

200 mA h g-1 at 1000 mA g-1

166 mA h g-1 at 2000 mA g-1

130 mA h g-1 at 5000 mA g-1

104 mA h g-1 at 10000 mA g-1

90 mA h g-1 at 20000 mA g-1

256.5 mA h g-1 at 500 mA g-1

(500 cycles)
150.1 mA h g-1 at 2500 mA g-1

(3000 cycles)
99.8 mA h g-1 at 5000 mA g-1

(10000 cycles)

8
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Hard carbon ~250 mA h g-1 at 25 mA g-1 ~230 mA h g-1 at 25 mA g-1

(100 cycles) 9

Amorphous carbon
254 mA h g-1 at 30 mA g-1

212 mA h g-1 at 150 mA g-1

162 mA h g-1 at 300 mA g-1

226 mA h g-1 at 30 mA g-1

(150 cycles) 10

Hollow carbon 
nanowires

252 mA h g-1 at 50 mA g-1

238 mA h g-1 at 125 mA g-1

216 mA h g-1 at 250 mA g-1

149 mA h g-1 at 500 mA g-1

206.3 mA h g-1 at 50 mA g-1

(400 cycles) 11

Graphene-templated 
carbon

205 mA h g-1 at 200 mA g-1

150 mA h g-1 at 500 mA g-1

118 mA h g-1 at 1000 mA g-1

97 mA h g-1 at 2000 mA g-1

68 mA h g-1 at 5000 mA g-1

45 mA h g-1 at 10000 mA g-1

190 mA h g-1 at 200 mA g-1

(2000 cycles) 12

Cellulose derived 
carbon nanofibers

262.9 mA h g-1 at 40 mA g-1

85 mA h g-1 at 2000 mA g-1
176 mA h g-1 at 200 mA g-1

(600 cycles) 13

Electrospun carbon 
nanofibers

233 mA h g-1 at 50 mA g-1

180 mA h g-1 at 100 mA g-1

173 mA h g-1 at 200 mA g-1

136 mA h g-1 at 500 mA g-1

113 mA h g-1 at 1000 mA g-1

82 mA h g-1 at 2000 mA g-1

169 mA h g-1 at 200 mA g-1

(200 cycles) 14

Functionalized N-
doped carbon 
nanofibers

172 mA h g-1 at 50 mA g-1

150 mA h g-1 at 200 mA g-1

139 mA h g-1 at 500 mA g-1

132 mA h g-1 at 1000 mA g-1

121 mA h g-1 at 2000 mA g-1

100 mA h g-1 at 5000 mA g-1

87 mA h g-1 at 10000 mA g-1

134.2 mA h g-1 at 200 mA g-1

(200 cycles) 15

Electrospun nitrogen-
doped carbon 
nanofibers

293 mA h g-1 at 50 mA g-1

159 mA h g-1 at 1000 mA g-1

254 mA h g-1 at 50 mA g-1

150 mA h g-1 at 1000 mA g-1

(200 cycles)
16

Porous carbon 
nanofibers

280 mA h g-1 at 50 mA g-1

200 mA h g-1 at 1000 mA g-1

164 mA h g-1 at 2000 mA g-1

90 mA h g-1 at 5000 mA g-1

60 mA h g-1 at 10000 mA g-1

40 mA h g-1 at 20000 mA g-1

266 mA h g-1 at 50 mA g-1

(100 cycles)
140 mA h g-1 at 500 mA g-1

(1000 cycles)

17
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N,O-dual doped carbon 
network

650 mA h g-1 at 100 mA g-1

501 mA h g-1 at 200 mA g-1

344 mA h g-1 at 500 mA g-1

264 mA h g-1 at 800 mA g-1

235 mA h g-1 at 1000 mA g-1

197 mA h g-1 at 2000 mA g-1

180 mA h g-1 at 3000 mA g-1

161 mA h g-1 at 5000 mA g-1

545 mA h g-1 at 100 mA g-1

(100 cycles)
240 mA h g-1 at 2000 mA g-1

(2000 cycles)

18

Nitrogen-doped carbon 
nanofiber film

315 mA h g-1 at 500 mA g-1

~275 mA h g-1 at 1000 mA g-1

~170 mA h g-1 at 10000 mA g-1

154 mA h g-1 at 15000 mA g-1

377 mA h g-1 at 100 mA g-1

(100 cycles)
210 mA h g-1 at 5000 mA g-1

(7000 cycles)

19

Graphene/nitrogen-
doped porous carbon 
nanofiber composite

557.1 mA h g-1 at 50 mA g-1

180.1 mA h g-1 at 100 mA g-1

115.7 mA h g-1 at 800 mA g-1

104 mA h g-1 at 1600 mA g-1

175.9 mA h g-1 at 100 mA g-1

130 mA h g-1 at 200 mA g-1

(300 cycles)
97.7 mA h g-1 at 1000 mA g-1

(500 cycles)

20

Nitrogen-doped 
carbon/graphene

336 mA h g-1 at 30 mA g-1

274 mA h g-1 at 100 mA g-1

249 mA h g-1 at 200 mA g-1

207 mA h g-1 at 500 mA g-1

177 mA h g-1 at 1000 mA g-1

139 mA h g-1 at 2000 mA g-1

94 mA h g-1 at 5000 mA g-1

270 mA h g-1 at 50 mA g-1

(200 cycles) 21

Graphite ~100 mA h g-1 at 37.2 mA g-1 ~75 mA h g-1 at 37.2 mA g-1

(1000 cycles) 22

Porous nitrogen-doped 
carbon sphere

237 mA h g-1 at 100 mA g-1

215 mA h g-1 at 200 mA g-1

184 mA h g-1 at 500 mA g-1

155 mA h g-1 at 1000 mA g-1

206 mA h g-1 at 200 mA g-1

(600 cycles) 23

Hard carbon 
nanoparticles

275 mA h g-1 at 25 mA g-1

266 mA h g-1 at 50 mA g-1

236 mA h g-1 at 125 mA g-1

181 mA h g-1 at 250 mA g-1

72 mA h g-1 at 1250 mA g-1

45 mA h g-1 at 2500 mA g-1

207 mA h g-1 at 50 mA g-1

(500 cycles) 24

S-doped N-rich carbon 
nanosheets

350 mA h g-1 at 50 mA g-1

300 mA h g-1 at 100 mA g-1

280 mA h g-1 at 200 mA g-1

250 mA h g-1 at 500 mA g-1

220 mA h g-1 at 1000 mA g-1

190 mA h g-1 at 2000 mA g-1

150 mA h g-1 at 5000 mA g-1

110 mA h g-1 at 10000 mA g-1

211 mA h g-1 at 1000 mA g-1

(1000 cycles) 25

G/C nanofibers

429.4 mA h g-1 at 100 mA g-1

401.7 mA h g-1 at 200 mA g-1

371.5 mA h g-1 at 500 mA g-1

342 mA h g-1 at 1000 mA g-1

324.5 mA h g-1 at 2000 mA g-1

291.4 mA h g-1 at 5000 mA g-1

261.1 mA h g-1 at 10000 mA g-1

408.8 mA h g-1 at 100 mA g-1

(100 cycles)
382.8 mA h g-1 at 500 mA g-1

(300 cycles)
300.8 mA h g-1 at 2000 mA g-1

(1000 cycles)

Present work
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