Supplementary Information

Polyoxometalate Modified Pine Cone Biochar Carbon for Supercapacitor Electrodes

Matthew Genovese and Keryn Lian

	1
Sample	Average Electrode Mass Loading (mg cm ⁻²)
PC 2-1	1.80
PC 4-1	1.76
PC 5-1	1.75
PC 2-1-PMo ₁₂	2.59
PC 4-1-PMo ₁₂	2.80
PC 5-1-PMo ₁₂	3.38
PC 5-1-PM012-PW12	3.33

Table S1: Average mass loading of each electrode sample tested

*Table S2: Surface chemical composition of bare and PMo*₁₂ *modified PC Carbon samples determined by XPS analysis*

	C (At. %)	O (At. %)	Mo (At. %)
PC 2-1	93.7	6.3	
PC 4-1	93.8	6.2	
PC 5-1	95.0	5.0	
PC 2-1-PMo ₁₂	85.5	13.1	1.4
PC 4-1-PMo ₁₂	82.1	15.0	2.9
<i>PC</i> 5-1- <i>PM</i> 0 ₁₂	69.9	17.3	5.8

Figure S1: XPS surface chemical composition of PMo_{12} modified PC Carbon in terms of weight

%

Figure S2: (A) Cyclic Voltammograms (CVs) of the unmodified PC 2-1, PC 4-1, and PC 5-1 carbon substrates at 10 mV s⁻¹; (B) capacitance of the PC carbon substrates at 10 mV s⁻¹ in terms of both areal (primary axis) and gravimetric (secondary axis) values.

Figure S3: (A) Areal and (B) gravimetric capacitance vs. scan rate for the unmodified PC 2-1, PC 4-1, and PC 5-1 substrates.

Scheme S1:

Proton coupled electron transfer for PMo_{12} in acidic aqeuos solutions:¹

$$\begin{split} PMo_{12}O_{40}{}^{3-} + 2e^{-} + 2H^{+} &\leftrightarrow H_{2}PMo_{12}O_{40}{}^{3-} \\ PMo_{12}O_{40}{}^{3-} + 2e^{-} + 2H^{+} &\leftrightarrow H_{4}PMo_{12}O_{40}{}^{3-} \\ PMo_{12}O_{40}{}^{3-} + 2e^{-} + 2H^{+} &\leftrightarrow H_{6}PMo_{12}O_{40}{}^{3-} \end{split}$$

*Figure S4: Capacity retention of PC 5-1-PMo*₁₂ *electrode after 5000 successive cycles at 50 mV* s^{-1}

Figure S5: (A) Areal and (B) gravimetric capacitance of the bare and PMo_{12} - PW_{12} modified PC 5-1 substrate as a function of scan rate.

References

1. M. Sadakane and E. Steckhan, *Chemical Reviews*, 1998, **98**, 219-238.