Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Layer-by-Layer Assembly of Polyoxometalate-Pyrene-Decorated Fluorescent Microspheres for Suspension Immunoassay of *Listeria Monocytogenes*

Wen Ju^{a†}, Xiuling Song^{a†}, Gang Yan^{b†}, Kun Xu^a, Juan Wang^a, Dehui Yin^a, Li Li^a, Xiaofeng Qu^a, Yangguang Li^{b*}, Juan Li^{a*}

^{a.}College of Public Health, University of Jilin, Changchun, 130021, China; ^{b.} Key laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China

1 Crystal structural data and figures

2 Additional physical measurements

3 Additional LM detection experiments

1. Crystal structural figures and data of POM-pyrene 1

The single-crystal X-ray diffraction analysis shows that compound 1 crystallizes in the monoclinic C2/c space group. The structural unit of compound 1 consists of one $[V_6O_{13}{(OCH_2)_3CNH-CH_2-}]$ $C_{16}H_9$ }₂]₂- hybrid polyoxoanion and two TBA+ counter cations. In the hybrid polyoxoanion of 1, the central inorganic cluster {V₆O₁₉} shows a typical Lindqvist-type structure, in which six {VO₆} octahedra are connected with each other in an edge-sharing mode. Theoretically, $\{V_6O_{19}\}$ moiety possesses eight negative charges, however, the introduction of two Tris ligands on the surface of {V₆O₁₉} fragment brings six sharing O atoms between POM and Tris units (see Fig. S1 and Fig. S2), dramatically decreases the negative charges of the hybrid molecule, and stabilize the whole {V₆O₁₉} unit. Based on the covalent connections between POM and Tris linkers, two pyrene groups are introduced into the inorganic POM units, forming a butterfly-type hybrid molecule with two negative charges. It is noteworthy that the introduction of Tris(hydroxymethyl) groups into POM unit led to two types of V-O bond lengths. The bond lengths of V-Ocarbon range from 2.002(4) to 2.026(4)Å, while the bond lengths of V-O POM are in the range of 1.810(4)-1.825(4)Å. In the packing arrangement, the adjacent hybrid molecules are stacked together by the obvious π - π interactions between two adjacent parallel pyrene planes derived from different POM-pyrene hybrid molecules as wellas extensive weak C-H...O intermolecular interactions between POM units and adjacent pyrene groups, forming the 3-D supramolecular open framework with 1-D channels along c axis (Fig. S3 and Fig. S4). The short vertical distance between two adjacent pyrene planes is ca. 3.259Å (Fig. S5). The channels are filled with TBA+ cations, charge-balancing the whole negative supramolecular framework.

Fig. S1 ORTEP diagram of the structure of POM-pyrene 1 with thermal ellipsoids at 30% probability

displacement. All H atoms are omitted for clarity.

Fig. S2 Polyhedral and ball-and-stick view of the structure of POM-pyrene 1

Fig. S3 Packing arrangement of POM-pyrene in compound 1 viewed along c axis. H atoms and TBA+ cations are omitted for clarity.

Fig. S4 Packing arrangement of POM-pyrene units in the crystal structure of 1 viewed along (a) a axis and (b) b axis. All H atoms and TBA⁺ cations are omitted for clarity.

Fig. S5 Intermolecular π ... π interactions between two pyrene groups from adjacent hybrid POMpyrene units. The short distance between two pyrene planes is 3.259 Å.

Diffractive quality single crystal of compound 1 was mounted on a glass fiber and the crystallographic data of 1 was collected at 150(2) K on a Rigaku R-axis Rapid IP diffractometer using graphite monochromatic Mo-Kα radiation (λ = 0.71073 Å) and the IP technique. A multi-scan adsorption correction method was used. The structure of 1 was solved by the direct method and refined by the full-matrix least-squares method on F2 using the SHELXTL-97 crystallographic software package. Anisotropic thermal parameterswere used to refine non-hydrogen atoms on the organic C centers were included in the refinement riding on their respective parent C atoms. The crystal data and structure. refinement result of POM-pyrene 1 is summarized in Table S1.

Empirical formula C ₇₄ H ₁₀₈ N ₄ O ₁₉ V ₆ Formula weight 1663.28 7 (K) 150(2) λ (Å) 0.71073 Crystal system monoclinic Space group C2/c α (Å) 12.5396(2) b (Å) 24.454(2)
Formula weight 1663.28 Γ (K) 150(2) λ (Å) 0.71073 Crystal system monoclinic Space group C2/c a (Å) 12.5396(2) b (Å) 24.454(2)
T (K) 150(2) λ (Å) 0.71073 Crystal system monoclinic Space group C2/c a (Å) 12.5396(2) b (Å) 24.454(2)
λ (Å)0.71073Crystal systemmonoclinicSpace groupC2/ca (Å)12.5396(2)b (Å)24.454(2)
Crystal systemmonoclinicSpace groupC2/ca (Å)12.5396(2)b (Å)24.454(2)
Space group C2/c a (Å) 12.5396(2) b (Å) 24.454(2)
a (Å) 12.5396(2) b (Å) 24.454(2)
<i>b</i> (Å) 24.454(2)
c (Å) 25.013(2)
<mark>β (°)</mark> 93.069(2)
V (Å ³) 7658.9
<mark>Z</mark> 4
D _{calcd} (g cm ⁻³) 1.442
Absorption coefficient (mm ⁻¹) 0.774
F (000) 3480
ϑ range (°) 1.67-25.00
Reflections collected 19461
Unique reflections/(R _{int}) 6742/0.0617
GOF 1.001
$R_1 (I>2\sigma)^a$ 0.0682
wR ₂ (all data) ^b 0.1654

Table S1 Crystal data and structure refinements for compound 1.

Note: ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|$; ${}^{b}wR_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]^{1/2}$.

V(1)-O(4)	1.594(4)	V(2)-O(6)	1.585(4)
V(1)-O(8)	1.810(4)	V(2)-O(10)	1.816(4)
V(1)-O(7)	1.825(4)	V(2)-O(8)	1.823(4)
V(1)-O(1)#1	2.002(4)	V(2)-O(2)	2.009(4)
V(1)-O(2)#1	2.011(4)	V(2)-O(3)	2.026(4)
V(1)-O(9)	2.2280(10)	V(2)-O(9)	2.2374(10)
V(3)-O(5)	1.589(4)	V(3)-O(1)	2.004(4)
V(3)-O(10)#1	1.812(4)	V(3)-O(3)	2.021(4)
V(3)-O(7)	1.815(4)	V(3)-O(9)	2.2302(10)
O(4)-V(1)-O(9)	172.68(18)	O(6)-V(2)-O(9)	172.40(18)
O(8)-V(1)-O(9)	81.50(14)	O(10)-V(2)-O(9)	81.33(13)
O(7)-V(1)-O(9)	81.20(13)	O(8)-V(2)-O(9)	80.96(13)
O(1)#1-V(1)-O(9)	77.49(11)	O(2)-V(2)-O(9)	77.24(12)
O(2)#1-V(1)-O(9)	77.41(12)	O(3)-V(2)-O(9)	77.41(11)
O(5)-V(3)-O(9)	171.91(17)	O(1)-V(3)-O(9)	77.39(11)
O(10)#1-V(3)-O(9)	81.62(13)	O(3)-V(3)-O(9)	77.67(12)
O(7)-V(3)-O(9)	81.34(13)		

 Table S2
 Selected bond lengths (A) and angles () of POM-pyrene 1

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

2. Additional physical measurements

Fig. S7 ¹H NMR of compound **1** in DMSO. ¹H NMR (500 MHz,) δ 8.43 (d, *J* = 9.0 Hz, 1H), 8.27 (t, *J* = 7.0 Hz, 2H), 8.24 – 8.22 (m, 2H), 8.14 (d, *J* = 8.0 Hz, 3H), 8.05 (t, *J* = 7.5 Hz, 1H), 5.07 (s, 6H), 4.52 (d, *J* = 7.0 Hz, 2H), 3.17 – 3.14 (m, 8H), 1.57 – 1.54 (m, 8H), 1.34 – 1.27 (m, 8H), 0.93 (t, *J* = 7.5 Hz, 12H).

Fig. S8 ¹³C NMR of compound **1** in DMSO. ¹³C NMR (125 MHz, DMSO) : δ 136.1, 131.23, 130.9, 130.3, 128.8, 127.9, 127.8, 127.6, 127.2, 126.6, 125.4, 125.1, 124.6, 124.5, 124.3, 85.2, 58.0, 52.2, 43.5, 23.6, 19.7, 14.0.

3 Additional LM detection experiments

Anti-LM mAbs bioconjugated PS@POM-pyrene microspheres

Scheme S1 Schematic view of biofunctionalization steps of PS@POM-pyrene microspheres conjugated with anti-*LM* mAbs

Scheme S2 Schematic view of working principle of fluorescence microsphere-based suspension immunoassay

Fig. S9(a) The change of MFI values when different amounts of mice anti-*LM* mAb were used for coupling with 10^6 PS@POM-pyrene microspheres in the binding assay. The MFI values was increased when more mAb was coupled on the surface of the microspheres. **(b)** Median fluorescence intensity (MFI) values of the fluorescence microspheres incubated with *LM* Ag (n=5) and no *LM* Ag (PBS only, n=5) based on FCM measurements. During the measurement, the immunodiagnostic complex with fluorescently labeled streptavidin-PE is obtained. *LM* Ag samples incubated with anti-*LM* mAbs bioconjugated **P**₆ microspheres showed high MFI values, while low MFI value of PBS samples was detected.

FL6/ POM-pyrene -Height

Fig. S10 Flow cytometry of PS (POM-pyrene negative and PE positive), PS@POM-pyrene (POM-pyrene positive and PE negative and Immune complex (POM-pyrene positive and PE negative)

	LM-sample 1	LM-sample 2	PBS
MFI-1	5560	3723	42
MFI-2	5314	3540	44
MFI-3	5560	3703	44
Mean	5478.00	3655.33	43.33
S	115.97	81.96	0.94
CV%	2.12	2.24	2.18

 Table S3.
 Repeatability of PS@POM-pyrene used for detecting LM
 Ag