Electronic Supplementary Information

FRET-assisted selective detection of flavins *via* cationic conjugated polyelectrolyte under physiological conditions

Sameer Hussain,^a Akhtar Hussain Malik,^a and Parameswar Krishnan Iyer*^{a,b}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039. India ^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India

AUTHOR EMAIL ADDRESS: pki@iitg.ernet.in

AUTHOR FAX: +91 361 258 2349

Scheme S1. (a) FeCl₃, nitrobenzene, RT, 2 days (b) excess 1-methyl imidazole, reflux, 36 h.

Synthesis of monomer and brominated polymer

Synthesis of monomer M1 and polymer P1 was performed using established method.¹⁻²

Synthesis of cationic polymer poly(1,4-bis-(6-(1-methylimidazolium)-hexyloxy)-benzene bromide) (PMI)

The cationic polymer poly(1,4-bis-(6-(1-methylimidazolium)-hexyloxy)-benzene bromide) (PMI) was synthesized using our earlier reported method.³ In brief, P1 (0.12 mmol, 1eq.) and excess 1-methyl imidazole were transferred to a 100mL round-bottom flask and kept for stirring at 80°C in an oil bath. After 36 h, the reaction mixture was poured into excess CHCl₃ followed by stirring for about 1 h to obtain brownish color precipitate. The process was repeated to remove excess P1 and 1-methyl imidazole. The precipitate was then dried and filtered out to get pure polymer PMI with 85% yield.

¹H NMR (600 MHz, DMSO-*d*6, δ): 9.38 (b, 2H), 7.75 (b, 2H), 7.69 (b, 2H), 7.02 (b, 2H), 4.18 (b, 2H), 3.87 (b, 10H), 1.90 (b, 4H), 1.76 (b, 4H), 1.29 (b, 4H), 1.24 (b, 4H).

¹³C NMR (150 MHz, DMSO-*d*6, δ): 149.47, 136.50, 128.64, 123.50, 122.25, 114.20, 68.73, 48.69, 35.78, 29.79, 28.70, 28.49, 25.53.

Fig. S1 Calibration plot for RF in 10 mM HEPES buffer (pH=7.4) at room temperature.

Fig. S2 Calibration plot for FMN in 10 mM HEPES buffer (pH=7.4) at room temperature.

Fig. S3 Calibration plot for FAD in 10 mM HEPES buffer (pH=7.4) at room temperature.

Fig. S4 Detection limit limit plot for RF. LOD = $3 \times \sigma/k$ LOD = $3 \times 10548.54/4.58 \times 10^{10}$ = 6.9×10^{-7} M (690 nM)

Fig. S5 Detection limit plot for FMN. LOD = $3 \times \sigma/k$ LOD = $3 \times 9313.75/1.42 \times 10^{12}$ = 1.97×10^{-8} M (19.7 nM)

Fig. S6 Detection limit plot for FAD. LOD = $3 \times \sigma/k$ LOD = $3 \times 10721.55/2.40 \times 10^{12}$ = 1.34×10^{-8} M (13.4 nM)

File: PMIex336em406cnt2500ns50.FL

v Discrete Components Analysis (Reconvolution)

Fitting range		: [550; 1500] channels						
c ²		: 1.055						
Exp Num	В	err _B	f	err _f	t (ns)	errt		
1	0.081	0.017	100.0	15.96	1.190	0.003		
Background		: 2.613		Background error		0.117		
Shift		: -1.474 ns		Shift error		20.53		
IRF Background		: 0.115 fit	xed					

File: PMI+RFex336em406cnt2500ns50.FL

v Discrete Components Analysis (Reconvolution)

Fitting rang	e	: [550; 1600] channels						
C ²		: 0.985						
Exp Num	В	err _B	f	err _f	t (ns)	errt		
1	0.060	0.017	70.07	18.08	0.405	0.061		
2	0.007	6.7e-4	29.93	2.971	1.186	0.009		
Background		: 1.978		Background error		0.086		
Shift		: -0.415 ns		Shift error		10.04		
IRF Background		: 0.115 fi	ixed					

File: PMI+FMN336em406cnt2500ns50.FL

F

v Discrete Components Analysis (Reconvolution)

Fitting range	e	: [550; 14 : 1.044	450] channe	ls			
Exp Num	В	err _B	f	err _f	t (ns)	errt	
1	0.039	0.006	65.14	15.38	0.589	0.054	
2	0.009	8.1e-4	34.86	3.579	1.182	0.017	
Background		: 1.983 Background error : 0.1				0.146	
Shift		: -0.354 ns Shift en		ift error	:	8.275	
IRF Background		: 0.115 fixed					
: PMI+FA	Dex336e	m406cnt2	500ns50.1	FL			
Discrete Co	mponents	Analysis (R	econvolutio	on)			
Fitting range		: [550: 1500] channels					

C ²		: 1.015				
Exp Num	В	err _B	f	err _f	t (ns)	errt
1	0.030	0.003	63.68	11.53	0.593	0.043
2	0.008	5.6e-4	36.32	3.025	1.206	0.010
Background		: 1.891		Background error		0.123
Shift		: -0.219 ns		Shift error		5.530
IRF Background		: 0.115 fi	xed			

Fig. S7 Fitting parameters and IRF values correspond to lifetime measurements.

Fig. S8 Emission spectra of PMI, RF and the PMI/RF mixture at λ_{ex} =325 nm.

Fig. S9 Emission spectra of PMI, FMN and the PMI/FMN mixture at λ_{ex} =325 nm.

Fig. S10 Effect of various other vitamins, protein (BSA) and enzyme (lysozyme) on the emission of PMI in 10 mM HEPES buffer (pH=7.4) at room temperature. Concentration of PMI and each analyte were 10 μ M and 25 μ M, respectively.

Fig. S11 Effect of various amino acids (25 μ M) on the emission of PMI (10 μ M) in 10 mM HEPES buffer (pH=7.4) at room temperature.

Fig. S12 Effect of various inorganic and organinc phosphates on the emission of PMI in 10 mM HEPES buffer (pH=7.4) at room temperature. Concentration of PMI and each analyte were 10 μ M and 25 μ M, respectively.

Fig. S13 Spectral overlap between emission spectrum of PMI and absorbtion spectra of various other vitamins, protein (BSA) and enzyme (lysozyme).

Fig. S14 Effect of ionic strength on FRET efficency for RF detection. Concentration of PMI and RF were 10 μ M and 25 μ M, respectively.

Fig. S15 Effect of ionic strength on FRET efficency for FMN detection. Concentration of PMI and FMN were 10 μ M and 10.33 μ M, respectively.

Fig. S16 Effect of ionic strength on FRET efficency for FAD detection. Concentration of PMI and FAD were 10 μ M and 1.33 μ M, respectively.

Fig. S17 Detection limit plot for Cu²⁺ using PMI/FMN complex. LOD = $3 \times \sigma/k$ LOD = $3 \times 2100.54/1.12 \times 10^{10}$ = $5.62 \times 10^{-7} \text{ M} (0.56 \ \mu\text{M})$

Fig. S18 Detection limit plot for Cu²⁺ using PMI/FAD complex. LOD = $3 \times \sigma/k$ LOD = $3 \times 2802.44/9.76 \times 10^{10}$

```
= 8.61 \times 10^{-7} M (0.86 \ \mu M)
```


Fig. S19 Change in emission spectra on adding Cu^{2+} (6.6 × 10⁻⁵ M) to the solution of PMI (10 μ M) containing mixture of (a) RF/FMN (25 μ M/10.33 μ M), (b) RF/FAD (25 μ M/1.33 μ M), (c) FMN/FAD (10.33 μ M/1.33 μ M) and (d) RF/FMN/FAD (25 μ M/10.33 μ M/1.33 μ M) in 10 mM HEPES buffer (pH=7.4).

Table S1. A comparative study of the some best fluorometric based probes for the detection of flavins.

Publication	Material used	Sensing analytes	Detection Method	Discrimination	LOD
Current Work	Conjugated Polyelectrolyte	RF, FMN, FAD and Cu ²⁺	FRET	RF/FMN and RF/FAD	<i>RF-0.69</i> μ <i>M</i> , <i>FMN-</i> 19.68 n <i>M</i> and <i>FAD-</i> 13.40 n <i>M</i>)
J. Am. Chem. Soc. 2007 , 129, 4524- 4525	Bis(Zn ²⁺ - dipicolylamine complex	FAD	Direct fluorescence method	Not shown	Not determined (Detection in µM range)
ACS Appl. Mater. Interfaces 2013 , 5, 7392-7399	Sulfonated Graphene	RF and FMN	FRET	Not shown	0.6 μg/mL (1.6 μM)
Angew. Chem. Int. Ed. 2006 , 45, 1563-1568	DNA-duplex Aptamer	RF	Direct fluorescence method	Not shown	Not determined
<i>Organic</i> <i>Letters</i> , 2013, 15, 1210-1213	Pyrene bound Zn ²⁺ - dipicolylamine	FMN and FAD	Ratiometric method	FMN/FAD	Not determined (Detection in μM range)
<i>Org. Biomol.</i> <i>Chem.</i> 2016 , 14, 447-450	RNA Aptamer	FAD	Direct fluorescence method	Not shown	Not determined
<i>J. Phys.</i> <i>Chem. B</i> 2010 , 114, 10717-10727	Cucurbit[7]uril	RF and FAD	Direct fluorescence method	RF/FAD	Not determined
J. Am. Chem. Soc. 1995 , 117, 1246- 1257	RNA Aptamer	RF	Direct fluorescence method	Not shown	Not determined

Fig. S20 Change in emission of PMI after adding undoped serum samples.

Fig. S21 Change in emission of PMI after adding RF-doped serum samples.

Fig. S22 Change in emission of PMI after adding FMN-doped serum samples.

Fig. S23 Change in emission of PMI after adding FAD-doped serum samples.

References:

- A. J. J. M. van Breemen, P. T. Herwig, C. H. T. Chlon, J. Sweelssen, H. F. M. Schoo, E. M. Benito, D. M. de Leeuw, C. Tanase, J. Wildeman and P. W. M. Blom, *Adv. Funct. Mater.* 2005, 15, 872-876.
- G. Saikia, R. Singh, P. J. Sarmah, M. W. Akhtar, J. Sinha, M. Katiyar and P. K. Iyer, Macromol. Chem. Phys. 2009, 210, 2153-2159.
- 3. S. Hussain, A. H. Malik and P. K. Iyer, ACS Appl. Mater. Interfaces, 2015, 7, 3189-3198.