Electronic Supplementary Information

Robust glucose oxidase with Fe₃O₄@C-silica nanohybrid

structure

Yuling Yang,^a Genxing Zhu,^a Guangchuan Wang,^b Yali Li,^c Ruikang Tang*a,^b

- ^{*a*} Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China. *E-mail: rtang@zju.edu.cn
- ^b Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China.
- ^c Befar Group Co. Ltd., Binzhou, Shandong, 256000, China.

Figures

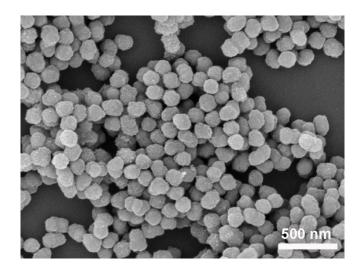


Fig. S1 SEM image of Fe₃O₄@C-GOD nanoparticles.

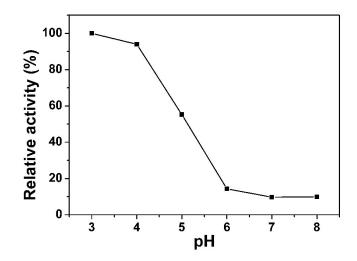


Fig. S2 Effect of pH on the H_2O_2 catalytic relative activity of $Fe_3O_4@C$ nanoparticles. It indicated that $Fe_3O_4@C$ nanoparticles showed no catalytic activity at neutral condition.

Table S1 Absorbance of phosphate buffer solution after 7 recycled of $Fe_3O_4@C-GOD-SiO_2$ nanohybrids, demonstrating that the nanohybrids could be entirely recycled from solution by magnet without given a false activity during the UV-vis measurement.

Number of cycles	Absorbance
1	0.0091
2	0.0112
3	0.0099
4	0.0047
5	0.0096
6	0.0059
7	0.0117