Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

## Electronic Supplementary Information

## Enhanced photoelectrochemical aptasensing platform amplified by sensitization effect of CdTe@CdS core-shell quantum dots coupled with exonuclease-I assisted target recycling

Xinxin Cong,<sup>‡a,b</sup> Gao-Chao Fan,<sup>‡b</sup> Xiaolei Wang,<sup>\*a</sup> E. S. Abdel-Halim,<sup>c</sup> and Jun-Jie Zhu<sup>\*b</sup>

<sup>a</sup> College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China. E-mail: wangxl@sdnu.edu.cn.

<sup>b</sup> State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. E-mail: jjzhu@nju.edu.cn

<sup>c</sup> Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

‡ These authors contributed to this work equally.

**Section 1:** EDX spectrum of the synthesized mTiO<sub>2</sub>:N sample

**Section 2:** BET measurement of the synthesized mTiO<sub>2</sub>:N sample.

Section 3: Optimization of weight ratios of urea/Ti in the mTiO<sub>2</sub>:N sample

Section 4: Comparison of using mTiO<sub>2</sub>:N and mTiO<sub>2</sub> as substrate material

Section 1:



Figure S1. EDX spectrum of the synthesized mTiO<sub>2</sub>:N sample.

## Section 2:



**Figure S2.** (A) N<sub>2</sub> adsorption/desorption isotherm and (B) pore size distribution of the synthesized mTiO<sub>2</sub>:N sample.

Panels A and B of Figure S2 display N<sub>2</sub> adsorption/desorption isotherm and pore size distribution of the synthesized mTiO<sub>2</sub>:N, respectively. The N<sub>2</sub> adsorption/desorption isotherm curve in Figure S2-A pointed the typical structure of type-IV isotherm with well-defined H1-type hysteresis loop, indicating existence of well-defined mesoporous structure in the synthesized mTiO<sub>2</sub>:N sample. It could be obtained from Figure S2-B that the average pore size of the mTiO<sub>2</sub>:N sample was about 9 nm, which was agree with the TEM result.

Section 3:



**Figure S3.** Photocurrent responses of the ITO/mTiO<sub>2</sub>:N electrode prepared with different weight ratios of urea/Ti in the synthesis process.

Section 4:



Figure S4. Photocurrent intensity of the aptasensor by using (a)  $mTiO_2:N$  and (b)  $mTiO_2$  as substrate photoactive material.