Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Facile scalable synthesis of highly monodisperse small silica nanoparticles using alkaline buffer solution and its application for efficient sentinel lymph node mapping

Bo Quan, ae Chaedong Lee, a Jung Sun Yoo, *bcd and Yuanzhe Piao*ad

^{a.} Program in Nano Science and Technology, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea. *E-mail: parkat9@snu.ac.kr

^{b.} Smart Humanity Convergence Center, Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.

^{c.} Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, *E-mail: jungsun.yoo@polyu.edu.hk

^{d.} Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea

^{e.} Department of Chemistry, Yanbian University, Yanji 133002, People's Republic of China.

Fig. S1 Photographs of silica nanoparticles formation in alkaline buffer solution. Organic/inorganic biphasic solution was turned to an emulsion with vigorous stirring for large scale synthesis.

Scheme S1 L-arginine Equilibrium Relations.

Fig. S2 Synthesis of silica nanoparticles by using $NH_4Cl \cdot NH_3$ buffer solution (pH= 9.0) at (A) 30 °C (10 nm), (B) 40 °C (13 nm), (C) 50 °C (17 nm), (D) 60 °C (25 nm) and (E) 70 °C (33 nm). (F) The diameter sizes of silica nanoparticles are increasing with rising temperature.

Fig. S3 TEM images of silica nanoparticles using a $NH_4Cl \cdot NH_3$ buffer solution of (A) pH = 7.0, (B) pH = 8.0, (C) pH = 9.0, and (D) pH = 9.8.

Fig. S4 Synthesis of silica nanoparticles by using $NH_4Cl \cdot NH_3$ buffer solution (pH= 7.0) at (A) 30 °C and (B) 50 °C.

Fig. S5 Synthesis of silica nanoparticles by using (A) a KCl·NaOH buffer solution (pH = 11.8) and (B) an EDTA·NaOH buffer solution (pH = 8.0).

Fig. S6 (A) Nitrogen-adsorption/desorption isotherm and (B) pore size distribution curve of silica nanoparticles (20 nm).

Fig. S7 High magnification TEM image of silica nanoparticles (scale bar: 50 nm).

Fig. S8 (A) TEM image of silica nanoparticles with particle sizes of 35 nm; silica nanoparticles were synthesized by using $NH_4Cl\cdot NH_3$ buffer solution (pH = 9.0). (B) 46 nm silica nanoparticles were produced by one-stage regrowth, and (C) 51 nm silica nanoparticles were produced by two-stage regrowth using an *in situ* regrowth approach. (D) Plot of silica nanoparticle sizes.

Fig. S9 TEM images of silica nanoparticles with (A) 100 nm and (B) 150 nm sizes by using the Stöber regrowth approach.

Fig. S10 TEM image of RITC-doped silica nanoparticles.

Method		Dye	Size	references
Modified Stöber method	Dye-ATPS conjugates	FITC	140-500 nm	A. van Blaaderen et al. ¹
	Dye-ATPS conjugates	FITC, R6G, and ROX	70 nm	Weihong Tan et al. 2
	Dye-ATPS conjugates	FITC, TRITC	50-70 nm	Ulrich Wiesner et al. ³
	silane-modified dye/PEG-shell	IR783	20 nm	Jianjun Cheng et al. ⁴
	silica-core/PEG-shell	Cy5, Cy5.5, RhG, TMR, DY782, and CW800	<10 nm	Ulrich Wiesner et al. ⁵
Reverse microemulsion method	Triton X-100 /hexanol /cyclohexane /H ₂ O	Rubpy	5-400nm	Weihong Tan et al.
	Triton X-100 /hexanol /cyclohexane /H ₂ O	TMR-dextran	60 nm	Weihong Tan et al. 7
	Triton X-100 /hexanol /cyclohexane /H ₂ O	OsBpy, RuBpy	70 nm	Weihong Tan et al. ⁸
Amino acid approach	Catalyst: L-lysine	RuBpy	17-30 nm	Sam R. Nugen et al. ⁹
Alkaline buffer approach	Catalyst: alkaline buffer	RITC	7-30 nm	This work

Table S1. Fabrication of dye doped silica nanoparticles.

- 1. A. Van Blaaderen and A. Vrij, *Langmuir*, 1992, **8**, 2921-2931.
- 2. L. Wang and W. Tan, *Nano Lett.*, 2006, **6**, 84-88.
- 3. A. Burns, P. Sengupta, T. Zedayko, B. Baird and U. Wiesner, *Small*, 2006, **2**, 723-726.
- 4. L. Tang, X. Yang, L. W. Dobrucki, I. Chaudhury, Q. Yin, C. Yao, S. Lezmi, W. G. Helferich, T. M. Fan and J. Cheng, *Angew. Chem. Int. Edit.*, 2012, **51**, 12721-12726.
- 5. K. Ma, C. Mendoza, M. Hanson, U. Werner-Zwanziger, J. Zwanziger and U. Wiesner, *Chem. Mater.*, 2015, **27**, 4119-4133.
- 6. S. Santra, K. Wang, R. Tapec and W. Tan, *J. Biomed. Opt.*, 2001, **6**, 160-166.
- 7. X. Zhao, R. P. Bagwe and W. Tan, *Adv. Mater.*, 2004, **16**, 173-176.
- 8. L. Wang, C. Yang and W. Tan, *Nano Lett.*, 2005, **5**, 37-43.
- 9. Y. Wang, W. Fan and S. R. Nugen, *Mater. Lett.*, 2013, **92**, 17-20.