Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Giant Negative Electrocaloric Effect in Eu-doped PbZrO₃ Thin Films

Mao Ye,^{a,b} Tao Li,^{a,b,c} Qiu Sun,^d Zhikai Liu, ^d Biaolin Peng,^{a,b,c} Chuanwei Huang,^a Peng Lin,^a

Shanming Ke,*a Xierong Zeng,^a Xiang Peng,^b Lang Chen,^e and Haitao Huang*c

* Corresponding author: smke@szu.edu.cn, and aphuang@polyu.edu.hk

Figure S1. Pyroelectric coefficient (dP/dT) as a function of temperature for electric field

Figure S2. Pyroelectric coefficient (dP/dT) as a function of electric field for temperature.

Figure S3. ΔS and ΔT under the applied field of $\Delta E = E_2 - E_1 = 91$ kV cm⁻¹.

Figure S4. Leakage current I (t) in Eu doped PZ thin film at room temperature.