Electronic Supporting Information (ESI) for

A dual-functional Mg-CP exhibits white-emitting after modification with CuI and photochromic behavior

Zhao-Feng Wu,^{a,b} Bin Tan,^c Zai-Lai Xie,^c Jing-Jing Fu^a and Xiao-Ying Huang*,^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

^b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.

^c College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, P.R. China

1. More structural details

Single-crystal X-ray diffraction data of **1** were collected on a Xcalibur E Oxford diffractometer with graphite monochromated Mo*K* α radiation ($\lambda = 0.71073$ Å) at 293 K. The absorption correction was applied using a multi-scan technique. The structure was solved by direct method and refined by full-matrix least-squares on F^2 using the SHELX-97 program.¹ Non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms bonded to C atoms were positioned with idealized geometry and those attached to O were located from difference-Fourier maps and their postions were refined with DFIX/DANG restraints. The empirical formula was confirmed by the elemental analysis. A summary of the crystal data and structural refinement details is given in Tables S1.

Table S1 Summary of crystal data and structural refinement details for 1.

Empirical formula	$C_{34}H_{32}Mg_2N_2O_{14}$
Formula weight	741.24
Crystal system	monoclinic
Space group	C2/c
T/K	293(2)
λ/ Å	0.71073

 ${}^{a}R_{1} = \sum ||Fo| - |Fc|| / \sum |Fo|, wR_{2} = \{\sum w[(Fo)^{2} - (Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

Fig. S1 *Ortep* drawing of the crystallographically asymmetric unit of 1. Hydrogen atoms are omitted for clarity.

Fig. S2 The hydrogen bonding acting as the inter-molecular interactions to stabilize the host-guest system in **1**.

Table S2 Hydrogen bonds for compound 1.						
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
O(5) -H(5A) ··N(1)	0.859	2.00	2.816	160		
O(5) -H(5B) ··O(6)	0.793	1.98	2.755	167		
O(7)-H(7A) ··O(1)	0.905	2.00	2.905	179		
O(7)-H(7B) ··O(3) #1	0.90	2.17	3.033	161		
C(17)-H(17) ···O(7) #2	0.93	2.60	3.312	134		

Symmetry transformations used to generate equivalent atoms: #1 - x + 3/2, -y + 3/2, -z + 2; #2 - x + 1, y, -z + 3/2.

Table S3 Distances ((d/A) and	l angles (°) for th	e π - π interact	ions in 1 .
----------------------	-----------	-------------	----------	--------------------------	--------------------

$ring(1)\cdots ring(2)$	$d[Cg(1)\cdots Cg(2)]$ ^b	α ^c	$\beta^{ ext{ d}}$	γ°	$d[Cg(1)\cdots P(2)]^{f}$	$d[Cg(2)\cdots P(1)]$ ^g
$C(6) \sim C(11) \cdots C(13)^{i} \sim C(17)^{i}, N1^{i};$	2.084(2)	(6)(17)	10.4	10.9	2 7404(12)	2 7595(15)
i: $1 + x + 3 + 2 - v + 1 + 2 + z$	5.984(2)	0.00(17)	19.4	19.8	5.7494(15)	5.7585(15)

^a For a graphical depiction of distances and angles in the assessment of π - π interactions, see Scheme 1. ^b Centroid–centroid distance. ^c Dihedral angle between the ring planes. ^d Angle between the centroid vector Cg(1)…Cg(2) and the normal to the plane 2. ^e Angle between the centroid vector Cg(1)…Cg(2) and the normal to the plane 1. ^f Perpendicular distance of Cg(1) on ring plane 2. ^g Perpendicular distance of Cg(2) on ring plane 1.

Scheme S1 Graphical presentation of the parameters used in Table S3 for the description of π - π stacking.

Table S4 Distances (d/A) and angles (°) for the C-H··· π interactions in 1.					
$X-H\cdots ring(3)$	$d[H\cdots Cg(3)]$	$d[X \cdots Cg(3)]$	°[X-HCg]		
$C(8) -H(8A) - C(13)^{ii} - C(17)^{ii}, N1^{ii};$	2 91	3 5/11	127		
ii: $1 + x, 1 + y, z$	2.91	5.541	127		

2. Materials and physical measurements

All chemicals were commercially purchased and used without further purification. Elemental analyses (EA) for C, H and N were performed on a German Elementary Vario EL III instrument. Energy dispersive spectroscopy (EDS) was obtained with a JEOL JSM-6700F scanning electron microscope. The UV-Vis spectra were measured at room temperature using a Perkin-Elmer Lambda 950 spectrometer, and a BaSO₄ plate was used as a standard (100% reflectance). The photochromic behavior was induced by irradiation with a Xe lamp (Beijing, 500 W). The absorption spectrum was calculated from reflectance spectrum by using the function: $\alpha/S = (1-R^2)/2R^2$, where α is the absorption coefficient, S is the scattering coefficient, and R is the reflectance. Powder X-ray diffraction (PXRD) patterns were conducted in the angular range of 2θ = 5 - 65° on a Miniflex II diffractometer using $CuK\alpha$ radiation. Electron spin resonance (ESR) signals were recorded with a Bruker A300 spectrometer. Inductively coupled plasma (ICP) analyses were performed with an Ultima 2 unit. X-ray photoelectron spectroscopy (XPS) measurements were performed using a ESCALAB 250Xi X-ray Photoelectron Spectrometer (XPS) Microprobe. Emission, excitation spectra and the photoluminescence life-time measurements of the compounds were recorded on a Edinburgh FLS980 fluorescence spectrometer at room temperature. The quantum yields (Φ) were recorded on an Edinburgh FLS920 fluorescence spectrometer at room temperature.

Synthesis of compound 1. A mixture of $Mg(NO_3)_2 \cdot 6H_2O$ (0.256 g, 1 mmol), 1,4-NDCH₂ (0.216 g, 1 mmol), bpy (0.198 g, 1 mmol), NaOH (0.080 g, 2 mmol) in CH₃OH (2 mL) and H₂O (2 mL) was sealed in a 20 mL Teflon-lined stainless-steel autoclave at 373K for 2 days. Colorless block-like crystals of 1 (0.125 g, yield: 34% based on magnesium) were obtained. Anal. Calc. for 1: C, 55.09%; H, 4.35%; N, 3.78%. Found: C, 55.31%; H, 4.16%; N, 3.77%.

Synthesis of 1-CuI. As-synthesized compound **1** (~75 mg, 0.2 mmol) was loaded into an agate mortar and manually ground with the pestle to afford a fine powder. After that it was immersed in 10 mL anhydrous acetonitrile with CuI (0.025 and 0.05 mmol, respectively) in a 20 mL glass bottle that was kept at 373K for about 24 h, to get complexes of **1-CuI** (1.87% and 3.15%), respectively.

Preparation for the guest-exchangeable samples. As-synthesized compound 1 (~100 mg) was immersed in 10 mL CH₃OH or CH₃CH₂OH, and kept at 373K for about 5 days, to get the guest-exchanged compounds. The EA results for the CH₃OH and CH₃CH₂OH-exchanged samples are C, 54.06/54.53%; H, 4.08/3.97% and C, 57.75/58.07%; H, 3.90/3.96%, respectively.

Fig. S3 The excitation and emission spectra of compound 1 in the solid state at room temperature.

Fig. S4 The decay profile of compound 1.

Fig. S5 Solid-state PL spectra of samples 1 and 1-CuI monitored at 360 nm; inset: photographs of samples 1 and 1-CuI.

Fig. S6 Solid adsorption spectra of compounds 1 and 1-CuI.

Fig. S7 Solid-state excitation spectra of 1-CuI monitored at 410 and 550 nm, respectively.

Fig. S8 Solid-state PL spectra of 1-CuI with different Cu contents monitored at 360 nm.

Fig. S9 Solid-state PL spectra of 1 by varying excitation wavelengths.

Fig. S10 PXRD patterns of 1, 1', 1-CuI and 1 in acetonitrile at 373K for 24 hours.

Fig. S11 XPS spectra of the Cu 2p (a) and I 3d (b) region in **1-CuI**; the inset is the fitting data of Cu 2p and I 3d.

Fig. S12 XPS spectra of the N 1s region for compounds 1 and 1-CuI.

Fig. S13 Energy dispersive spectroscopy (EDS) of 1-CuI.

Fig. S14 PXRD patterns of compounds 1, 1-CH₃OH, 1-CH₃CH₂OH and 1-NW.

Fig. S15 Solid-state PL spectra of **1-CuI-NW** by varying excitation lights and the photograph of the CIE chromaticity diagram.

Fig. S16 The ESR profiles of samples 1-CH₃OH and 1-CH₃CH₂OH before and after the irradiation of a Xe lamp.

Fig. S17 The emission profiles of compound 1 under different irradiated time.

References

- 1. G. M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.
- 2. W. M. Wendlandt, H. G. Hecht, *Reflectance Spectroscopy*, Interscience, New York, 1966.