Supplementary Information for

Colorimetric Selective Cu²⁺ Detection by Lanthanide based Hybrid Complexes Associated with a Single Crystal Growth Mediated Transformation

Soumyabrata Roy, Oinam Bijeta Chanu, Sumanta Sarkar and Sebastian C. Peter*

New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India

 Table S1: Selected bond lengths [Å] of the compounds 1 and 2 with estimated standard deviations in parentheses.

1: H ₂ [D	y ₂ (PABA) ₄ (bpy) ₂	2(NO ₃) ₂].(bpy) ₂ (EtO)	$H)_{2}(NO_{3})_{2}$
Bond Label	Distances (Å)	Bond Label	Distances (Å)
O1-Dy1	2.386(7)	N4-Dy1	2.543(8)
O2-Dy1	2.709(7)	O2-Dy1 A	2.320(7)
O3-Dy1	2.335(7)	O4-Dy1 A	2.302(7)
O5-Dy1	2.462(8)	Dy1-O2 A	2.320(7)
O6-Dy1	2.522(7)	Dy1-O4 A	2.302(7)
N7-Dy1	2.925(10)	Dy1-Dy1 A	3.9241(9)
N3-Dy1	2.594(8)		
2: H ₂ [Nd	2(3-nba)2(DMF)2	$(CH_3CO_2)_4 (H_2O)_2].$	(CH ₃ CO ₂) ₂
O1-Nd1	2.422(4)	O8-Nd1A	2.427(3)
O2-Nd1A	2.433(4)	O8-Nd1	2.653(4)
O1W-Nd1	2.455(4)	O11-Nd1	2.466(4)
O3-Nd1	2.566(4)	Nd1-O8A	2.427(4)
O4-Nd1	2.511(4)	Nd1-O2A	2.433(4)
07-Nd1	2.520(4)	Nd1-Nd1A	4.0767(8)

Table S2. Important stretching frequency peaks oberved in the IR spectrum of compound 1

Compound	ν(OH) + ν(N-H)	ν(С-Н)	ν^1	v(N-H) _{def}	v (C=C)	v(N=O)
1	3469 3364	3072	1677	1602	1602 1513	1470 _{asym} 1308 _{sym}

3209		1524	$1036_{bidentate}$

Compound	UV bands	Assignments
	(nm)	
1	290-305	π - π^* of ligand
	370	n- π^* of ligand
	760	${}^{6}\mathrm{H}_{15/2} \rightarrow {}^{6}\mathrm{F}_{3/2}$
	810	${}^{6}\mathrm{H}_{15/2} \rightarrow {}^{6}\mathrm{F}_{5/2}$
	912	${}^{6}\mathrm{H}_{15/2} \rightarrow {}^{6}\mathrm{F}_{7/2}$
2	250-300	π - π^* of ligand
	348	n- π^* of ligand
	470	${}^{4}I_{9/2} \rightarrow {}^{4}G_{11/2} {}^{2}G_{9/2} {}^{2}K_{15/2}$
	520	${}^{4}I_{9/2} \rightarrow {}^{4}G_{7/2} {}^{3}K_{13/2}$
	583	${}^{4}\mathrm{I}_{9/2} \rightarrow {}^{4}\mathrm{G}_{5/2}$
	683	${}^{4}\mathrm{I}_{9/2} \rightarrow {}^{4}\mathrm{F}_{9/2}$
	745	${}^{4}\mathrm{I}_{9/2} \longrightarrow {}^{4}\mathrm{F}_{7/2}, {}^{4}\mathrm{S}_{3/2}$
	801	${}^{4}\mathrm{I}_{9/2} \rightarrow {}^{4}\mathrm{F}_{5/2}, {}^{2}\mathrm{H}_{9/2}$
	870	${}^{4}\mathrm{I}_{9/2} \rightarrow {}^{4}\mathrm{F}_{5/2}$

Table S3. The	bands observed	l in the solid	state UV	spectra of the	compounds 1	and 2 .
---------------	----------------	----------------	----------	----------------	-------------	----------------

Table S4: Assignment of PL bands in the solid/ solution state photoluminiscence spectra of 1 and 2.

Compound	PL ban	ds (nm)	Assignments
	Solid	EtOH solution	
1	350-450 (centred at	300-400 (centred	$L \rightarrow M$ charge transfer band,
	394)	at 350)	Ligand radiative relaxation
	479	479	${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$
	572	571	${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$
	750	703	${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2} / {}^{4}I_{15/2} \rightarrow {}^{6}H_{9/2}$
2	350-450		$L \rightarrow M$ charge transfer band,
			Ligand radiative relaxation

No	Sampl	Salt	Conc	Analyte	Cation 1	Cation 2	Cation 3
	e				(ppm)	(ppm)	(ppm)
А	1-Dy	$Cu(NO_3)_2$	0.5 M	Supernatant	Cu - Saturated	Dy- 54	None
В				Crystals	Cu - 19	Dy- 4	None
С		CuSO ₄	0.5 M	Crystals	Cu - 57	Dy-6	None
D				Supernatant	Cu - Saturated	Dy-69	None
Е		AgNO ₃	0.5 M	Crystals	Dy - 1	Ag-6	None
F				Supernatant	Dy - 30	Ag-3000	None
G		CuCl ₂	0.5 M	Crystals	Cu - 47	Dy-0.6	None
Н				Supernatant	Cu - Saturated	Dy-48	None
Ι	2-Nd	$Cu(NO_3)_2$	0.5 M	Crystals	Cu - 90	Nd-8	None
J				Supernatant	Cu - Saturated	Nd-170	None
Κ		CuSO ₄	0.5 M	Crystals	Cu - 49	Nd-4	None
L				Supernatant	Cu - Saturated	Nd-91	None
М		CuCl ₂	0.5 M	Crystals	Cu - 87	Nd-5	None
Ν				Supernatant	Cu - Saturated	Nd-145	None
Mixe	ed Solven	t Study					
Р	2-Nd	Cu, Ni, Co,	~ 0.1 M	Crystals	Cu -18	Nd-44	None
Q		Zn, Au, Cd	each	Supernatant-a	Nd -72	All other ca	tions present
R				Supernatant-b	Nd -54	All other ca	tions present
Т	1-Dy	Cu, Ni, Co,	~ 0.1 M	Crystals	Cu -4	Dy-13	Au-5
U		Zn, Au, Cd	each	Supernatant-a	Dy -12	All other ca	tions present
V				Supernatant-b	Dy -3	All other ca	tions present

 Table S5: ICP-OES analysis of metal exchange studies of 1 and 2.

Table S6. Crystal data and structure refinement for 2_Cu exchanged: C₂₈H₃₂Cu₂N₄O₂₄ at 100 K.

Empirical formula	$C_{28}H_{32}Cu_2N_4O_{24}$
Formula weight	935.65
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$a = 17.3672(15) \text{ Å}, a = 90^{\circ}$ $b = 7.1242(6) \text{ Å}, \beta = 101.285(5)^{\circ}$ $c = 14.5591(13) \text{ Å}, \gamma = 90^{\circ}$
Volume	1766.5(3) Å ³
Ζ	2
Density (calculated)	1.759 g/cm ³
Absorption coefficient	1.309 mm ⁻¹
F(000)	956
Crystal size	0.140 x 0.050 x 0.040 mm ³
θ range for data collection	2.853 to 24.997°
Index ranges	-20<=h<=20, 0<=k<=8, 0<=l<=17
Reflections collected	3011
Independent reflections	3011
Completeness to $\theta = 24.997^{\circ}$	97.2%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3011 / 277 / 288
Goodness-of-fit	1.073
Final R indices $[I > 2\sigma(I)]$	$R_{obs} = 0.0623, wR_{obs} = 0.1544$
R indices [all data]	$R_{all} = 0.1013, wR_{all} = 0.1795$
Extinction coefficient	0.0039(11)
Largest diff. peak and hole	1.511 and -0.709 e·Å ⁻³

 $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR = \{\Sigma [w(|F_o|^2 - |F_c|^2)^2] / \Sigma [w(|F_o|^4)]\}^{1/2} \text{ and } w = 1/[\sigma^2(Fo^2) + (0.0729P)^2 + 15.6912P] \text{ where } P = (Fo^2 + 2Fc^2)/3$

Sample	Salt	Concentration	Ananlyte	Cu	Nd
				(ppm)	(ppm)
2 (Nd	CuCl2	10-1 M	Crystal	Saturated	150
crystal)					
			Solution	Saturated	Saturated
		10-2 M	Crystal	40	Saturated
			Solution	Saturated	250
		10-3 M	Crystal	5	Saturated
			Solution	106	200
		10-4 M	Crystal	3	Saturated
			Solution	10	140
		10-5 M	Crystal	1.9	Saturated
			Solution	2	150

 Table S7: Study of the detection limit of Cu2+ (CuCl₂) detection by 2

Figures

Figure S1. Comparison of experimental and simulated PXRD patterns of the bulk samples of (a) 1 and (b) 2

Figure S2. Coordination geometry of Dy in the compound **1.** (a) 3-face centred Trigonal prism geometry when 9 coordinating oxygens are considered and (b) Square antiprism geometry of **1** considering 8 coordinating oxygens (removing O2: bond distance 2.71 Å)

Figure S3. (a) Unit cell and (b) super cell of 1.

Figure S4. Hydrogen bonding in compound **1.**(a) and (b) H-bonding/ C-H O interactions shown as red dashed lines in the dinuclear unit of **1** and (c) 2D crystal growth due to H-bonding/ C-H O interactions in **1.**

Figure S5. Coordination geometry of Nd in **2.** (a) 3-face centred Trigonal prism geometry of Nd centre when 9 coordinating oxygens are considered and (b) Square antiprism geometry of Nd centre considering 8 coordinating oxygens (removing O1: bond distance 2.66 Å)

Figure S6. Hydrogen bonding and C-H O interactions in compound **2** (a) H-bonding shown as red dashed lines in dinulear unit of 2, (b) C-H O interactions in 2. (c) H-bonding shown as dashed red line (also highlighted in yellow circle) in a chain of dinuclear units of 2.

Figure S7. Hydrogen bonding and C-H-O interactions in the crystal packing of compound **2** (a), (b) and (c) showing growth of the crystal structure along various directions arising from H-bonding and C-H O interactions.

Figure S8. IR spectra of 1 (left) and 2 (right). The spectra shows all the stretching frequencies in the two compounds corresponding to the organic moieties present in the respective structures.

Figure S9. PL of **1.** (a) PL in ethanol, (b) PL of **1** in ethanol as a function of wavelength and (c) PL of **1** (solid).

Figure S10. PL of **2.** (a) PL of 2 (solid) as a function of wavelength, (b) PL of 2 (solid) as a function of wavelength and (c) PL of **2** in ethanol as a function of wavelength.

Figure S11. Thermogravimetric plot of the compounds 1 (a) and 2 (b). The weight loss percentages at various temperatures are marked.

Figure S12. $Cu2^+$ sensing study on single crystals of Compound 1 at different concentrations of $CuCl_2$. (a) In 2 M $CuCl_2$, (b) Compound 1 in 1 M $CuCl_2$, (c) Compound 1 in 0.5 M and (d) Compound 1 in 0.25 M $CuCl_2$.

Figure S13. Cu2⁺ sensing study on single crystals of Compound **2** at different concentrations of CuCl₂. (a) Compound **2** in 0.5 M CuCl₂, (b) Compound **2** in 1 M CuCl₂ and (c) Compound **2** in 2 M CuCl₂.

Elements	Before Cu2+ exchange (At %)	After Cu2+ exchange (At %)
С	65.35	52.54
Dy	2.48	0.89
0	20.82	17.67
N	11.34	7.24
Cu	0.00	21.65
Cl	0.00	0.00

Elements	Before Cu2+ exchange (At %)	After Cu2+ exchange (At %)
Dy	100.0	1.07
Cu	0.00	98.93

Figure S14. EDS of **1** before (left) and after (right) Cu^{2+} exchange along the compositions obtained shown in tables below.

Elements	Before Cu2+ exchange (At %)	After Cu2+ exchange (At %)
С	49.50	61.49
Nd	1.97	0.00
0	37.66	18.44
Ν	10.86	4.00
Cu	0.00	16.00
Cl	0.00	0.07

Elements	Before Cu2+ exchange (At %)	After Cu2+ exchange (At %)
Nd	100.0	0
Cu	0.00	100.0

Figure S15. EDS of 2 before (left) and after (right) Cu^{2+} exchange along the compositions obtained shown in tables below.

Figure S16. Ni^{2+} exchange studies on **2.** (a) Compound **2** in 0.5 M NiCl₂ at different intervals of time and (b) Compound **2** in 1 M NiCl₂ at different intervals of time.

Figure S17. Compound **2** in 1 M CoCl₂ after various intervals of time. (a) Pristine crystal of **2**. The red colour that is seen in (b) and (c) are of the solution, as the crystals are inside the red solution of $CoCl_2$, (d) Crystal after being taken out of the solution and (e) Crystal after being thoroughly washed with water.

Figure S18. Compound **2** in Solution of mixed salts (0.5 m of each of CuCl₂, CoCl₂, NiCl₂). (a) Immediately after addition of the solution, (b) After 5 mins, (c) Pristine crystals of **2**, (d) After 10 mins, (e) After washing thoroughly with deionized water.

Reference

1. X.-W. Lei, G.-H. Zhong, L.-H. Li, C.-L. Hu, M.-J. Li and J.-G. Mao, *Inorg. Chem.*, 2009, **48**, 2526-2533.