Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

## **Supporting Information**

## Dehydration of Molybdenum Oxide Hole Extraction Layers via Microwave Annealing for Efficiency

## and Lifetime Improvement in Organic Solar Cells

Anastasia Soultati<sup>a,b'\*</sup>, Ioannis Kostis<sup>c</sup>, Panagiotis Argitis<sup>a</sup>, Dimitra Dimotikali<sup>b</sup>, Stella Kennou<sup>d</sup>, Spyros

Gardelis<sup>e</sup>, Thanassis Speliotis<sup>a</sup>, Athanassios G. Kontos,<sup>a</sup> Dimitris Davazoglou<sup>a</sup>, Maria Vasilopoulou<sup>a,\*\*</sup>

<sup>a</sup>Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research "Demokritos",15310, Aghia Paraskevi Attikis, Athens, Greece

<sup>b</sup>Department of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece

<sup>c</sup>Department of Electronics, Technological Educational Institute (TEI) of Piraeus, 12244 Aegaleo, Greece

<sup>d</sup>Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

<sup>e</sup>Department of Physics, University of Athens, 15784, Athens, Greece

\*a.soultati@inn.demokritos.gr \*\*m.vasilopoulou@inn.demokritos.gr

## **Table of Contents**

| <b>Table S1</b> Indexing of the various peaks of XRD patterns of Mo oxides                                  | S3  |
|-------------------------------------------------------------------------------------------------------------|-----|
| Figure S1 Tauc plot of the as-deposited and MW-annealed Mo oxide films                                      | S4  |
| Figure S2 Transmittance spectra of the as-deposited and MW-annealed Mo oxide films                          | S4  |
| Figure S3 J-V curves of devices with MoOx interlayers for different heating powers                          | S5  |
| Figure S4 Absorption spectra of P3HT:PC <sub>71</sub> BM films spin-coated on the different Mo oxide layers |     |
| Figure S5 and Table S2 Contact angle measurements                                                           | S6  |
| Figure S6 Variation of the refractive index of the as-deposited and MW-annealed Mo oxide films              | S7  |
| Figure S7 Variation of the extinction coefficient of the as-deposited and MW-annealed Mo oxide films        | sS7 |
| Figure S8 Distribution of the normalized optical intensity of incident light within the device              | S8  |

| 2θ (degrees) | Possible Compound                        | Crystallographic Plane             |  |  |
|--------------|------------------------------------------|------------------------------------|--|--|
| 22.22        | MoO <sub>3</sub>                         | [1 0 0], [0 2 0], [1 1 0]          |  |  |
| 25.52        | Mo <sub>9</sub> O <sub>26</sub>          | [-1 3 1], [ -1 1 1]                |  |  |
| 25.07        | Mo <sub>9</sub> O <sub>26</sub> [-2 1 1] |                                    |  |  |
| 25.71        | MoO <sub>3</sub>                         | [0 0 2], [0 2 0], [0 4 0], [2 1 0] |  |  |
|              | Mo <sub>9</sub> O <sub>26</sub>          | [-1 1 2]                           |  |  |
|              | MoO <sub>3</sub>                         | [0 1 1], [0 2 1]                   |  |  |
|              | Mo <sub>9</sub> O <sub>26</sub>          | [2 -3 1], [-3 1 0]                 |  |  |
| 27.32        | Mo <sub>4</sub> O <sub>11</sub>          | [6 1 0]                            |  |  |
|              | Mo <sub>9</sub> O <sub>23</sub>          | [1 1 2]                            |  |  |
|              | Mo <sub>17</sub> O <sub>47</sub>         | [3 2 1]                            |  |  |
| 38.99        | MoO <sub>3</sub>                         | [1 0 2], [0 6 0], [0 2 0]          |  |  |
| 45.87        | MoO <sub>3</sub>                         | [0 0 8], [2 0 0]                   |  |  |
|              | Mo <sub>9</sub> O <sub>23</sub>          | [1 2 1]                            |  |  |
| 40.24        | MoO <sub>3</sub>                         | [0 2 0], [2 2 0], [0 0 2]          |  |  |
| 49.24        | Mo <sub>9</sub> O <sub>26</sub>          | [5 1 5]                            |  |  |
| 51.48        | Mo <sub>4</sub> O <sub>11</sub>          | [-8 1 3]                           |  |  |
|              | MoO <sub>3</sub>                         | [1 0 -4], [2 1 1], [0 8 0]         |  |  |
| 52.75        | Mo <sub>9</sub> O <sub>26</sub>          | [323]                              |  |  |
|              | Mo <sub>4</sub> O <sub>11</sub>          | [2 3 1]                            |  |  |
|              | MoO <sub>3</sub>                         | [1 2 0], [0 2 2], [1 1 2]          |  |  |
| 55.16        | Mo <sub>9</sub> O <sub>23</sub>          | [3 1 6]                            |  |  |
|              | Mo <sub>4</sub> O <sub>11</sub>          | [11 2 1]                           |  |  |
| 61.71        | MoO <sub>3</sub>                         | [2 6 0], [4 3 0]                   |  |  |

**Table S1.** Possible Mo oxides in  $MoO_x$  films and indexing of the various peaks observed in the XRD spectra in Figure 2 b of the main manuscript.



**Figure S1** Tauc plot, as derived from absorption measurements, of 30 nm thick as-deposited hydrogenated under-stoichiometric and the microwave annealed Mo oxide films for the estimation of optical energy band

gap.



Figure S2 Transmittance spectra of the as-deposited Mo oxide film and the MW-annealed one deposited on glass/FTO substrates.



Figure S3 J-V curves of devices with  $MoO_x$  interlayers for different heating powers.



**Figure S4** Absorption spectra of the P3HT:PC<sub>71</sub>BM blend films spin-coated on Mo oxide layers subjected (or not) to microwave annealing after deposition.



**Figure S5** Measured contact angle between a drop of (a) deionized water and (b) P3HT:PC<sub>71</sub>BM blend and Mo oxide films as deposited or being subjected to microwave annealing.

**Table S2** Polar and non-polar components of surface energies of the PEDOT:SS, Mo oxide and MW-annealed Mo oxide substrates as calculated from contact angle measurements results.

| Substrate           | θ <sub>w</sub><br>(°) | $\theta_i$ | $\gamma_s^p$ (mJ/m <sup>2</sup> ) | $\gamma_{s}^{d}$ (mJ/m <sup>2</sup> ) | $\gamma$ (mJ/m <sup>2</sup> ) |
|---------------------|-----------------------|------------|-----------------------------------|---------------------------------------|-------------------------------|
| PEDOT:PSS           | 29.0                  | 35.4       | 34.5                              | 31.4                                  | 65.9                          |
| MoO <sub>x</sub>    | 24.0                  | 14.2       | 32.5                              | 38.3                                  | 70.8                          |
| MW-MoO <sub>x</sub> | 9.0                   | 12         | 37.5                              | 37.9                                  | 75.4                          |



Figure S6 Variation of the refractive index of  $MoO_x$  and MW-annealed  $MoO_x$  films.



Figure S7 Variation of the extinction coefficient of  $MoO_x$  and MW-annealed  $MoO_x$  films.



**Figure S8** Distribution of the normalized optical intensity of incident light within the device (estimated for an incident light with a wavelength of 530 nm where the maximum of the photoactive blend absorption

occurs).