Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement

parameters (A	Ų) of	the average	structure	of K ₈ Nb ₇ P ₇ O ₃₉ .
---------------	-------	-------------	-----------	--

	x	<i>y</i>	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Nb ¹	0.77440 (4)	0.11937 (3)	0.070615 (19)	0.00819 (11)	
Nb ²	0.98212 (4)	0.73136 (3)	0.30766 (2)	0.00864 (12)	
Nb ³	0.88437 (4)	0.23012 (3)	0.30595 (2)	0.00898 (12)	
Nb ⁴	0.47911 (4)	1.10697 (3)	0.31043 (2)	0.00854 (12)	
Nb ⁵	1.38231 (4)	0.60709 (3)	0.30969 (2)	0.01040 (12)	
Nb ⁶	1.16398 (4)	0.19558 (3)	0.01483 (2)	0.00897 (12)	
Nb ⁷	1.29228 (4)	0.50993 (3)	0.07820 (2)	0.01189 (12)	
K ¹	0.50693 (11)	0.32371 (8)	0.18916 (6)	0.0198 (3)	
K ²	0.24869 (15)	0.24917 (9)	0.49368 (6)	0.0306 (4)	
K ³	0.74701 (13)	0.91212 (11)	0.18076 (6)	0.0295 (4)	
K4	0.97960 (15)	0.41130 (9)	0.17534 (7)	0.0298 (4)	
K ⁵	0.26232 (15)	0.82295 (9)	0.17160 (8)	0.0366 (4)	
P ¹	0.62053 (12)	0.84906 (9)	0.33361 (7)	0.0132 (3)	
P ²	1.10802 (12)	0.00474 (9)	0.32137 (7)	0.0152 (3)	
P ³	0.59834 (11)	-0.04022 (8)	-0.10333 (6)	0.0083 (3)	
P ⁴	0.76412 (12)	0.50742 (9)	0.33212 (7)	0.0138 (3)	
P ⁵	1.07298 (13)	0.36514 (9)	-0.09748 (6)	0.0122 (3)	
P ⁶	1.25752 (12)	0.34431 (9)	0.32084 (7)	0.0123 (3)	
P ⁷	0.53895 (11)	0.31438 (8)	0.00688 (6)	0.0079 (3)	
O ¹	1.3727 (3)	0.2491 (2)	0.29307 (18)	0.0160 (10)	
O ²	1.0906 (4)	0.5899 (3)	0.08726 (19)	0.0225 (11)	
O ³	0.4910 (3)	0.4305 (2)	0.05789 (16)	0.0117 (9)	
O ⁴	0.2596 (4)	1.0267 (3)	0.2919 (3)	0.0357 (15)	
O ⁵	0.8347 (3)	0.1780 (2)	0.17016 (17)	0.0132 (9)	
O ⁶	1.2814 (4)	0.3884 (3)	0.4053 (2)	0.0254 (12)	
O ⁷	0.6857 (3)	0.0705 (2)	-0.04996 (16)	0.0115 (9)	
O ⁸	0.9749 (3)	0.0717 (3)	0.28697 (18)	0.0175 (10)	
O ⁹	0.5608 (3)	0.0639 (3)	0.08201 (18)	0.0171 (10)	
O ¹⁰	0.7866 (3)	0.3791 (2)	0.29006 (17)	0.0145 (9)	
O ¹¹	1.2889 (3)	0.4415 (2)	0.28266 (17)	0.0144 (9)	
O ¹²	1.0918 (4)	0.3426 (3)	-0.17959 (18)	0.0239 (11)	
O ¹³	0.6090 (3)	0.3413 (2)	-0.05798 (16)	0.0120 (9)	
O ¹⁴	1.1750 (3)	0.6595 (3)	0.2873 (2)	0.0199 (11)	
O ¹⁵	0.6744 (3)	0.1640 (2)	0.29107 (19)	0.0172 (10)	
O ¹⁶	0.9346 (4)	0.2730 (3)	0.40406 (19)	0.0240 (11)	
O ¹⁷	1.3588 (4)	0.5573 (3)	0.17793 (17)	0.0164 (9)	
O ¹⁸	1.0736 (3)	0.2463 (2)	-0.07838 (16)	0.0143 (9)	

O ¹⁹	0.5673 (3)	0.9460 (2)	0.29647 (18)	0.0160 (9)	
O ²⁰	0.8818 (4)	0.5772 (3)	0.3039 (2)	0.0243 (12)	
O ²¹	0.9745 (3)	0.1785 (2)	0.04426 (17)	0.0138 (9)	
O ²²	0.7919 (4)	0.5336 (3)	0.4167 (2)	0.0259 (11)	
O ²³	0.5106 (4)	1.1501 (3)	0.40988 (19)	0.0298 (13)	
O ²⁴	1.2025 (3)	0.3583 (2)	0.07441 (16)	0.0108 (8)	
O ²⁵	0.8366 (3)	-0.0378 (2)	0.05439 (15)	0.0112 (8)	
O ²⁶	0.7599 (3)	0.7960 (3)	0.29660 (19)	0.0191 (10)	
O ²⁷	0.5949 (3)	0.5331 (3)	0.2975 (2)	0.0228 (11)	
O ²⁸	0.5706 (4)	-0.0328 (3)	-0.18420 (17)	0.0175 (10)	
O ²⁹	0.6695 (3)	0.2711 (2)	0.05942 (16)	0.0130 (9)	
O ³⁰	0.3950 (3)	0.2286 (2)	-0.02315 (17)	0.0132 (9)	
O ³¹	1.4800 (4)	0.7565 (3)	0.3034 (2)	0.0316 (14)	
O ³²	1.1990 (4)	0.4529 (2)	-0.04390 (17)	0.0158 (9)	
O ³³	1.1331 (5)	0.0339 (3)	0.4053 (2)	0.0328 (13)	
O ³⁴	1.3025 (3)	0.1473 (2)	0.09709 (16)	0.0122 (9)	
O ³⁵	0.6560 (4)	0.8896 (3)	0.4181 (2)	0.0282 (12)	
O ³⁶	1.4092 (5)	0.6416 (3)	0.4087 (2)	0.0318 (13)	
O ³⁷	1.0871 (3)	0.2950 (3)	0.2837 (2)	0.0210 (11)	
O ³⁸	1.0546 (3)	0.8737 (2)	0.28033 (18)	0.0167 (10)	
O ³⁹	1.0291 (4)	0.7810 (3)	0.40641 (19)	0.0270 (12)	
K ⁶	0	0	0.5	0.0785 (16)	0.7312
K ⁷	0.1802 (4)	-0.0795 (3)	0.52932 (18)	0.0165 (10)	0.2688
K ⁸	0.6377 (2)	0.0977 (2)	0.53762 (11)	0.0530 (8)	0.7312
K ⁹	0.5	0.5	0.5	0.139 (3)	0.7609
K ¹⁰	0.6646 (9)	0.3950 (4)	0.4741 (3)	0.055 (2)	0.2391
K ¹¹	0.8820 (2)	0.4220 (2)	0.53503 (11)	0.0553 (8)	0.7609
K ¹²	-0.3652 (3)	-0.3851 (3)	0.16563 (17)	0.0078 (9)	0.254

Table S2. Atomic displacement parameters (Å²) of the average structure of $K_8Nb_7P_7O_{39}$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb ¹	0.00765 (17)	0.00901 (18)	0.00790 (18)	0.00142 (13)	0.00173 (13)	0.00216 (13)
Nb ²	0.00798 (18)	0.00667 (18)	0.01250 (19)	0.00100 (12)	0.00266 (13)	0.00420 (13)
Nb ³	0.00659 (18)	0.00753 (18)	0.01436 (19)	0.00076 (12)	0.00241 (13)	0.00529 (14)
Nb ⁴	0.00711 (18)	0.00701 (18)	0.01328 (19)	0.00120 (12)	0.00343 (13)	0.00481 (13)
Nb ⁵	0.00948 (18)	0.00679 (18)	0.0170 (2)	0.00147 (13)	0.00625 (14)	0.00452 (14)
Nb ⁶	0.00733 (17)	0.00936 (18)	0.01247 (19)	0.00178 (12)	0.00263 (13)	0.00621 (13)
Nb ⁷	0.0200 (2)	0.00792 (18)	0.01097 (19)	0.00612 (14)	0.00792 (14)	0.00465 (14)
K ¹	0.0203 (5)	0.0198 (5)	0.0170 (4)	-0.0004 (4)	0.0033 (4)	0.0015 (4)
K ²	0.0537 (7)	0.0158 (5)	0.0223 (5)	0.0047 (4)	0.0030 (5)	0.0075 (4)
K ³	0.0312 (6)	0.0433 (6)	0.0193 (5)	0.0139 (5)	0.0103 (4)	0.0135 (5)
K ⁴	0.0431 (6)	0.0201 (5)	0.0339 (6)	0.0052 (4)	0.0183 (5)	0.0135 (4)
K ⁵	0.0392 (7)	0.0182 (5)	0.0516 (8)	-0.0063 (4)	0.0281 (6)	-0.0032 (5)

	1					
P ¹	0.0097 (5)	0.0104 (5)	0.0247 (6)	0.0030 (4)	0.0062 (4)	0.0114 (4)
P ²	0.0086 (4)	0.0077 (5)	0.0315 (6)	0.0005 (3)	0.0015 (4)	0.0105 (4)
P ³	0.0082 (4)	0.0078 (4)	0.0092 (4)	0.0005 (3)	0.0006 (3)	0.0035 (3)
P ⁴	0.0098 (5)	0.0065 (4)	0.0254 (6)	0.0010 (3)	0.0047 (4)	0.0041 (4)
P ⁵	0.0194 (5)	0.0097 (5)	0.0080 (5)	0.0066 (4)	0.0025 (4)	0.0030 (4)
P ⁶	0.0097 (4)	0.0086 (4)	0.0234 (6)	0.0021 (3)	0.0072 (4)	0.0097 (4)
P ⁷	0.0079 (4)	0.0061 (4)	0.0114 (5)	0.0013 (3)	0.0038 (3)	0.0039 (3)
O1	0.0112 (13)	0.0126 (14)	0.0288 (17)	0.0037 (11)	0.0067 (12)	0.0110 (12)
O^2	0.0186 (15)	0.0159 (15)	0.0307 (18)	0.0088 (12)	0.0046 (13)	0.0028 (13)
O ³	0.0100 (13)	0.0076 (12)	0.0184 (14)	0.0022 (10)	0.0075 (11)	0.0020 (11)
O^4	0.0123 (15)	0.0245 (18)	0.078 (3)	0.0020 (13)	0.0184 (17)	0.0208 (19)
O^5	0.0129 (13)	0.0150 (14)	0.0119 (13)	0.0020 (11)	0.0012 (11)	0.0046 (11)
O ⁶	0.0339 (19)	0.0209 (16)	0.0258 (18)	0.0047 (14)	0.0160 (15)	0.0077 (14)
O ⁷	0.0154 (13)	0.0090 (13)	0.0109 (13)	-0.0006 (10)	0.0003 (11)	0.0056 (10)
O ⁸	0.0163 (14)	0.0136 (14)	0.0256 (16)	0.0077 (11)	0.0046 (12)	0.0099 (12)
O ⁹	0.0095 (13)	0.0170 (14)	0.0241 (16)	0.0002 (11)	0.0046 (12)	0.0039 (12)
O ¹⁰	0.0120 (13)	0.0116 (13)	0.0208 (15)	0.0021 (10)	0.0041 (11)	0.0055 (11)
O ¹¹	0.0176 (14)	0.0053 (12)	0.0247 (16)	0.0014 (10)	0.0079 (12)	0.0088 (11)
O ¹²	0.047 (2)	0.0151 (15)	0.0100 (14)	0.0041 (14)	0.0051 (14)	0.0043 (12)
O ¹³	0.0132 (13)	0.0081 (12)	0.0178 (14)	-0.0002 (10)	0.0061 (11)	0.0067 (11)
O ¹⁴	0.0097 (14)	0.0161 (15)	0.0388 (19)	0.0065 (11)	0.0119 (13)	0.0113 (13)
O ¹⁵	0.0064 (13)	0.0144 (14)	0.0332 (17)	-0.0012 (10)	0.0071 (12)	0.0088 (13)
O ¹⁶	0.0280 (18)	0.0253 (17)	0.0154 (16)	-0.0006 (14)	-0.0009 (13)	0.0033 (13)
O ¹⁷	0.0221 (15)	0.0148 (14)	0.0130 (14)	0.0012 (12)	0.0074 (12)	0.0024 (11)
O ¹⁸	0.0180 (14)	0.0109 (13)	0.0145 (14)	0.0033 (11)	-0.0029 (11)	0.0076 (11)
O ¹⁹	0.0176 (14)	0.0104 (13)	0.0210 (15)	0.0065 (11)	0.0036 (12)	0.0059 (12)
O ²⁰	0.0165 (15)	0.0123 (14)	0.048 (2)	-0.0005 (12)	0.0111 (15)	0.0112 (14)
O ²¹	0.0072 (13)	0.0168 (14)	0.0177 (14)	-0.0028 (10)	0.0069 (11)	0.0026 (11)
O ²²	0.0287 (18)	0.0178 (16)	0.0260 (18)	-0.0019 (13)	0.0050 (14)	-0.0020 (13)
O ²³	0.041 (2)	0.038 (2)	0.0142 (16)	0.0175 (17)	0.0088 (15)	0.0111 (15)
O ²⁴	0.0155 (13)	0.0070 (12)	0.0128 (13)	0.0019 (10)	0.0083 (11)	0.0039 (10)
O ²⁵	0.0146 (13)	0.0089 (12)	0.0114 (13)	0.0008 (10)	0.0031 (11)	0.0045 (10)
O ²⁶	0.0086 (13)	0.0207 (15)	0.0314 (18)	0.0058 (11)	0.0084 (12)	0.0099 (13)
O ²⁷	0.0083 (13)	0.0161 (15)	0.042 (2)	0.0066 (11)	0.0057 (13)	0.0047 (14)
O ²⁸	0.0239 (16)	0.0167 (15)	0.0108 (14)	0.0004 (12)	-0.0014 (12)	0.0050 (12)
O ²⁹	0.0146 (13)	0.0117 (13)	0.0135 (14)	0.0015 (11)	0.0013 (11)	0.0053 (11)
O ³⁰	0.0105 (13)	0.0087 (13)	0.0195 (15)	0.0003 (10)	0.0054 (11)	0.0011 (11)
O ³¹	0.0183 (16)	0.0097 (15)	0.073 (3)	-0.0009 (12)	0.0160 (17)	0.0170 (17)
O ³²	0.0236 (15)	0.0109 (13)	0.0135 (14)	-0.0037 (11)	0.0029 (12)	0.0049 (11)
O ³³	0.048 (2)	0.0163 (16)	0.0272 (19)	-0.0041 (15)	-0.0149 (16)	0.0083 (14)
O ³⁴	0.0115 (13)	0.0111 (13)	0.0141 (14)	0.0029 (10)	-0.0001 (11)	0.0052 (11)
O ³⁵	0.0324 (19)	0.0343 (19)	0.0276 (19)	0.0111 (15)	0.0099 (15)	0.0218 (16)
O ³⁶	0.044 (2)	0.0278 (19)	0.0182 (17)	0.0075 (16)	0.0031 (16)	-0.0009 (14)

O ³⁷	0.0106 (14)	0.0212 (16)	0.0371 (19)	-0.0008 (12)	0.0080 (13)	0.0156 (14)
O ³⁸	0.0165 (14)	0.0095 (13)	0.0265 (17)	-0.0033 (11)	0.0063 (12)	0.0075 (12)
O ³⁹	0.035 (2)	0.0275 (18)	0.0147 (16)	0.0089 (15)	-0.0033 (14)	0.0045 (14)
K ⁶	0.123 (3)	0.0406 (15)	0.082 (2)	-0.0152 (17)	0.088 (2)	-0.0064 (16)
K ⁷	0.0188 (16)	0.0136 (15)	0.0122 (14)	-0.0111 (12)	-0.0086 (12)	0.0027 (12)
K ⁸	0.0503 (11)	0.0786 (15)	0.0301 (9)	0.0418 (11)	0.0074 (8)	0.0143 (9)
K ⁹	0.126 (4)	0.128 (4)	0.151 (4)	-0.099 (3)	-0.118 (3)	0.109 (4)
K ¹⁰	0.121 (6)	0.019 (2)	0.034 (3)	-0.024 (3)	0.050 (3)	0.000 (2)
K ¹¹	0.0597 (12)	0.0755 (14)	0.0351 (10)	0.0403 (11)	0.0177 (9)	0.0162 (9)
K ¹²	0.0002 (12)	0.0124 (14)	0.0062 (13)	-0.0073 (10)	0.0006 (10)	-0.0047 (11)

Table S3. Geometric parameters (Å) of the average structure of $K_8Nb_7P_7O_{39}$.

Nb ¹ —O ⁵	1.767 (3)	P ⁶ —O ³⁷	1.544 (3)
Nb ¹ —O ⁷	2.144 (3)	P ⁷ —O ³	1.555 (3)
Nb ¹ —O ⁹	2.005 (3)	P ⁷ —O ¹³	1.542 (3)
Nb ¹ —O ²¹	2.031 (3)	P ⁷ —O ²⁹	1.549 (3)
Nb ¹ —O ²⁵	1.917 (3)	P ⁷ —O ³⁰	1.519 (3)
Nb ¹ —O ²⁹	2.076 (3)	K ¹ —O ^{1ix}	2.737 (4)
Nb ² —O ¹²ⁱⁱ	2.267 (3)	K ¹ —O ³	3.028 (3)
Nb ² —O ¹⁴	1.914 (3)	K ¹ —O ⁵	3.340 (3)
Nb ² —O ²⁰	2.002 (3)	K ¹ —O ⁹	3.276 (3)
Nb ² —O ²⁶	2.056 (3)	K ¹ —O ¹⁰	2.727 (3)
Nb ² —O ³⁸	2.028 (3)	K^1 — O^{11ix}	2.873 (3)
Nb ² —O ³⁹	1.728 (3)	$K^1 - O^{15}$	3.224 (3)
Nb ³ —O ⁵	2.374 (3)	K^1 — O^{17ix}	3.118 (3)
Nb ³ —O ⁸	2.010 (3)	K ¹ —O ^{24ix}	3.180 (3)
Nb ³ —O ¹⁰	2.044 (3)	$K^1 - O^{27}$	2.742 (3)
Nb ³ —O ¹⁵	1.900 (3)	K ¹ —O ²⁹	2.898 (3)
Nb ³ —O ¹⁶	1.720 (3)	K ¹ —O ^{34ix}	2.710 (2)
Nb ³ —O ³⁷	2.047 (3)	K^2 — O^{6ix}	2.684 (4)
Nb ⁴ —O ¹ⁱⁱⁱ	2.010 (3)	K ² —O ^{16ix}	2.975 (3)
Nb4	2.040 (3)	$K^2 - O^{22x}$	2.726 (3)
Nb4-015i	1.932 (3)	K ² —O ^{23xi}	3.017 (4)
Nb4	2.035 (3)	K ² —O ^{33ix}	2.704 (3)
Nb ⁴ O ²³	1.733 (3)	K ² —O ^{35x}	2.680 (4)
Nb ⁴ —O ^{28iv}	2.223 (3)	K ² —O ^{36xii}	3.224 (4)
Nb ⁵ O ¹¹	2.028 (3)	K ² —O ^{39x}	3.335 (4)
Nb ⁵ O ¹⁴	1.909 (3)	K ³ -O ⁵ⁱ	3.326 (3)
Nb ⁵ O ¹⁷	2.314 (3)	K ³ O ⁸ⁱ	2.803 (3)
Nb ⁵ —O ²⁷ v	2.057 (3)	K ³ —O ⁹ⁱ	3.177 (3)
Nb ⁵ O ³¹	2.014 (3)	K ³ —O ¹²ⁱⁱ	3.344 (3)
Nb ⁵ —O ³⁶	1.729 (3)	K ³ —O ¹⁵ⁱ	3.274 (3)
Nb ⁶ —O ¹⁸	2.018 (3)	K ³ —O ¹⁸ⁱⁱ	2.932 (3)

Nb ⁶ O ²¹	1.829 (3)	K ³ —O ¹⁹	2.786 (3)		
Nb ⁶ —O ²⁴	1.944 (2)	K ³ —O ²⁵ⁱ	2.796 (3)		
Nb ⁶ —O ^{25vi}	1.960 (2)	K ³ —O ²⁶	2.853 (4)		
Nb ⁶ O ^{30v}	2.281 (3)	K ³ —O ^{28iv}	3.099 (3)		
Nb ⁶ O ³⁴	1.990 (3)	K ³ —O ^{30iv}	2.975 (3)		
Nb7—O ²	1.991 (3)	K ³ —O ³⁸	3.064 (3)		
Nb7—O ³ v	1.995 (3)	K4—O ²	3.248 (4)		
Nb7—O ¹³ⁱⁱ	2.111 (3)	K4—O ⁵	3.018 (3)		
Nb7—O ¹⁷	1.769 (3)	K4-O ¹⁰	3.007 (3)		
Nb7—O ²⁴	1.943 (3)	K4—O ¹¹	2.983 (3)		
Nb7-O ³²	2.176 (3)	K4—O ¹²ⁱⁱ	2.996 (3)		
P ¹ —O ¹⁹	1.547 (3)	K4—O ¹⁴	3.342 (3)		
P ¹ —O ²⁶	1.536 (3)	K4-O ²⁰	2.893 (3)		
P ¹ —O ^{31ix}	1.537 (3)	K4—O ²¹	3.137 (3)		
P ¹ —O ³⁵	1.479 (3)	K ⁴ —O ²⁴	2.853 (3)		
P ² —O ^{4xiii}	1.537 (4)	K4—O ²⁹	3.228 (3)		
P ² —O ⁸	1.556 (3)	K4—O ³⁷	2.782 (4)		
P ² —O ³³	1.480 (4)	K ⁵ —O ^{2ix}	3.014 (3)		
P2	1.561 (3)	K ⁵ O ⁴	2.805 (4)		
P ³ O ⁷	1.518 (2)	K ⁵ —O ^{7iv}	2.972 (3)		
P ³ —O ^{9viii}	1.531 (3)	K ⁵ —O ^{13iv}	2.838 (3)		
P ³ O ²⁸	1.505 (3)	K ⁵ —O ^{17ix}	3.320 (3)		
P ³ —O ^{34vi}	1.560 (3)	K ⁵ —O ^{18iv}	3.077 (3)		
P4-O ¹⁰	1.551 (3)	K ⁵ —O ¹⁹	3.210 (3)		
P4—O ²⁰	1.554 (4)	K ⁵ —O ^{28iv}	2.808 (3)		
P4—O ²²	1.481 (4)	K ⁵ —O ^{31ix}	3.101 (4)		
P4—O ²⁷	1.549 (3)	K ⁵ —O ^{38ix}	2.860 (3)		
P ⁵ —O ²ⁱⁱ	1.530 (3)	$K^{6}-K^{7}$	1.900 (3)		
P ⁵ O ¹²	1.506 (3)	<u>K^{6}—K^{7xi}</u>	1.900 (3)		
P5-018	1.557 (3)	K^7 — K^{8xii}	2.131 (4)		
P ⁵ —O ³²	1.517 (3)	<u>K⁹—K¹⁰</u>	1.929 (7)		
P6-01	1.561 (3)	K^9 — K^{10xiii}	1.929 (7)		
P6-06	1.479 (3)	$K^{10}-K^{11}$	1.979 (7)		
P6-011	1.560 (3)				
Symmetry codes: (i) $-x+2$,	-y+1, -z; (ii) $x-1, y+1$	1, z; (iii) x, y+1, z; (iv) -x+1	1, -y+1, -z; (v) x+1,		
y, z; (vi) - x + 2, -y, -z; (vii)	<i>x</i> -1, <i>y</i> , <i>z</i> ; (viii) <i>x</i> +1, <i>y</i>	-1, z; (ix) $x, y-1, z;$ (x) $-x+$	-1, -y, -z; (xi) -x,		
-y, -z+1; (xii) $-x+1, -y, -z+1;$ (xiii) $-x+1, -y+1, -z+1;$ (xiv) $-x+2, -y+1, -z+1.$					

Table S4. Interatomic Distances (Å) of K—O bonds(including K⁶, K⁷, K⁸, K⁹, K¹⁰, K¹¹ and K¹² atoms) influenced by Strong Modulation in compound K₈Nb₇P₇O₃₉.

distance	average	minimum	maximum
K ⁶ -O ³³ (i)	2.437(5)	2.552(6)	2.557(7)

K ⁶ -O ³³ (v)	2.437(5)	2.250(6)	2.552(6)
K ⁶ -O ³⁵ (vi)	3.093(5)	2.916(5)	3.511(5)
K ⁶ -O ³⁵ (ii)	3.096(5)	2.916(5)	3.509(5)
K ⁶ -O ³⁹ (vi)	2.747(4)	2.715(5)	2.794(5)
K ⁶ -O ³⁹ (ii)	2.746(4)	2.715(5)	2.793(5)
K ⁷ -O ¹⁶ (v)	3.118(9)	3.041(10)	3.157(10)
K ⁷ -O ²³ (ii)	2.927(8)	2.807(9)	3.010(9)
K ⁷ -O ³³ (i)	2.846(9)	2.788(10)	2.935(10)
K ⁷ -O ³³ (v)	2.917(8)	2.886(10)	2.993(10)
K ⁷ -O ³⁵ (ii)	2.640(7)	2.591(8)	2.656(8)
K ⁷ -O ³⁹ (vi)	2.605(6)	2.536(8)	2.641(8)
K ⁸ -O ²³ (iii)	2.686(5)	2.675(6)	2.721(6)
K ⁸ -O ³¹ (iv)	3.361(5)	3.152(5)	3.506(5)
K ⁸ -O ³³ (vii)	2.777(5)	2.736(5)	2.878(5)
K ⁸ -O ³⁵ (iii)	2.801(4)	2.706(5)	3.059(5)
K ⁸ -O ³⁵ (ii)	2.744(5)	2.662(6)	2.978(6)
K ⁸ -O ³⁶ (iv)	3.036(5)	2.904(5)	3.230(5)
K ⁸ -O ³⁹ (iv)	3.033(5)	2.922(5)	3.369(5)
K ⁹ -O ⁶ (i)	2.489(4)	2.367(5)	2.564(5)
K ⁹ -O ⁶ (iv)	2.489(4)	2.368(5)	2.564(5)
K ⁹ -O ²²	3.206(6)	2.953(7)	3.599(7)
K ⁹ -O ²² (ii)	3.202(6)	2.952(7)	3.596(7)
K ⁹ -O ³⁶ (i)	2.734(6)	2.678(7)	2.826(7)
K ⁹ -O ³⁶ (iv)	2.734(6)	2.678(7)	2.823(7)
K ¹⁰ -O ⁶ (i)	3.425(18)	2.521(19)	4.609(19)
K ¹⁰ -O ⁶ (iv)	2.751(12)	2.693(13)	2.842(13)
K ¹⁰ -O ¹⁶	2.993(17)	2.646(19)	3.571(19)
K ¹⁰ -O ²²	2.683(17)	2.607(19)	2.837(19)
K ¹⁰ -O ²³ (iii)	3.128(14)	2.910(15)	3.616(15)

K ¹⁰ -O ³⁶ (iv)	2.663(18)	2.631(19)	2.771(19)		
K ¹¹ -O ⁶ (iv)	2.734(5)	2.671(6)	2.797(6)		
K ¹¹ -O ¹⁶	2.707(5)	2.671(5)	2.738(5)		
K ¹¹ -O ²⁰ (iv)	3.335(5)	3.224(6)	3.438(6)		
K ¹¹ -O ²²	2.798(6)	2.731(6)	2.988(6)		
K ¹¹ -O ²² (iv)	2.720(5)	2.657(6)	2.916(6)		
K ¹¹ -O ³⁶ (iv)	3.027(6)	2.877(7)	3.447(7)		
K ¹¹ -O ³⁹ (iv)	3.007(6)	2.915(6)	3.202(6)		
K ¹² -O ³ (vi)	2.658(6)	2.616(7)	2.677(7)		
K ¹² -O ¹² (viii)	2.498(7)	2.432(8)	2.533(8)		
K ¹² -O ¹³ (ix)	2.807(7)	2.745(8)	2.872(8)		
K ¹² -O ¹⁷ (x)	2.606(7)	2.554(8)	2.628(8)		
K ¹² -O ²⁰ (vi)	3.079(7)	3.059(8)	3.130(8)		
K ¹² -O ²⁶ (vi)	2.721(6)	2.690(7)	2.789(7)		
K ¹² -O ²⁷ (vi)	2.825(8)	2.801(9)	2.891(9)		
K ¹² -O ³¹ (x)	3.020(7)	2.982(8)	3.103(8)		
K ¹² -O ³² (viii)	2.797(7)	2.716(8)	2.871(8)		
Symmetry codes: (i) x-1,y,z; (ii) -x+1,-y+1,-z+1; (iii) x,y-1,z; (iv) -x+2,-y+1,-z+1; (v) -x+1,-y,-					
z+1; (vi) x-1,y-1,z; (vii) -x+2,-y,-z+1; (viii) -x+1,-y,-z; (ix) -x,-y,-z; (x) x-2,y-1,z. x, y					

Table S5. Bond valence sums (BVS) influenced by structural modulation in compound

K 81 N 07 I 7 O 39.					
Atoms	Average	Minimum	Maximum		
Nb ¹	5.1218(4)	5.075(7)	5.163(7)		
Nb ²	5.1965(7)	5.081(7)	5.269(7)		
Nb ³	5.1406(7)	5.119(7)	5.161(7)		
Nb ⁴	5.1156(7)	5.090(7)	5.142(7)		
Nb ⁵	5.0977(7)	5.033(7)	5.152(7)		
Nb ⁶	4.9558(4)	4.905(7)	5.012(7)		

K₀Nh₇P₇O₂₀

Nb ⁷	5.0595(4)	5.032(7)	5.101(7)
K ¹	1.37368(2)	1.325(7)	1.423(7)
K ²	1.10501(3)	1.076(7)	1.130(7)
K ³	1.139674(1)	1.083(7)	1.191(7)
K ⁴	1.024644(1)	0.983(7)	1.071(7)
K ⁵	1.040286(1)	1.007(7)	1.081(7)
K ⁶	1.38105(11)	1.163(7)	1.807(7)
K ⁷	0.96013(7)	0.910(7)	1.031(7)
K ⁸	0.99011(3)	0.848(7)	1.090(7)
K ⁹	1.23032(6)	1.124(7)	1.422(7)
K ¹⁰	0.9688(3)	0.884(7)	1.106(7)
K ¹¹	1.00621(3)	0.858(7)	1.079(7)
K ¹²	1.68253(13)	1.650(7)	1.762(7)
P ¹	5.0870(7)	5.015(7)	5.176(7)
P ²	4.9886(9)	4.927(7)	5.043(7)
P ³	5.1019(7)	5.046(7)	5.166(7)
P4	5.0418(9)	4.990(7)	5.092(7)
P ⁵	5.0870(7)	5.015(7)	5.176(7)
P6	5.0079(9)	4.988(7)	5.027(7)
P ⁷	4.9077(6)	4.877(7)	4.934(7)

Figure S1. EDS analysis for compound $K_8Nb_7P_7O_{39}$.

Figure S2. Evolution of Nb–O distances and P–O distances versus the internal parameter t for (a) Nb¹, (b) Nb², (c) Nb³, (d) Nb⁴, (e) Nb⁵, (f) Nb⁶, (g) Nb⁷, (h) P¹, (i) P², (j) P³, (k) P⁴, (l) P⁵, (m) P⁶ and (n) P⁷ atomic positions.

Figure S3. x_1-x_4 section through the superspace electron density at the position of the K¹(a), K²(b), K³(c), K⁴(d) and K⁵(e) atoms.

Figure S4. Evolution of K–O distances versus the internal parameter t for (a) K^1 , (b) K^2 , (c) K^3 , (d) K^5 and (e) K^5 atoms.