Supporting information for

Role of rare earth in the magnetic, magnetocaloric and magnetoelectric properties in $RCrO_3$ (R= Dy,Nd,Tb,Er) crystals

L. H. Yin,^{*a} J. Yang,^a P. Tong,^a X. Luo,^a C. B. Park,^b K. W. Shin,^b W. H. Song,^a J. M. Dai,^a K. H. Kim,^b X. B. Zhu,^a and Y. P. Sun^{*cad}

^aKey Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

^bCenter for Novel States of Complex Materials (CeNSCMR) and Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

°High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

^dCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

* To whom all correspondence should be addressed. E-mail: <u>ypsun@issp.ac.cn</u> and <u>lhyin@issp.ac.cn</u>

Figure S1 temperature dependent specific heat for RCrO₃ (R=Dy, Nd, Er) crystals.

Figure S2 Temperature dependent magnetization under different *H* along *a* axis for ErCrO₃ crystals. Inset is the derivative M_a with respect to *T* at *H*=0.02T, which indicates the two magnetic transitions around T_{SR1} and T_{SR2} .

Figure S3 Temperature dependent magnetization under different *H* along *c* axis for ErCrO_3 crystals. The *H*-induced magnetic transition below T_{SR1} is obviously manifested by the gradual upturn of M_c under high *H*. Inset is the derivative M_c with respect to *T* at *H*=0.1T, which indicates the two magnetic transitions around T_{SR1} and T_{SR2} .

Figure S4 Magnetocaloric effect as a function of temperature along different axes for GdCrO₃ crystals.

Figure S5 Arrott plots transformed from the isothermal magnetization (M–H) data along b axis for TbCrO₃ crystals. The slope of the Arrott plot becoming negative below ~T_{N2} is clearly shown.

Figure S6 Arrott plots transformed from the isothermal magnetization (M–H) data along c axis for ErCrO₃ crystals. The slope of the Arrott plot becomes negative below T_{SR1} ~10 K.

Figure S7 Dielectric constant as a function of temperature around T_{N2} along different axes for TbCrO₃ crystals (Top panel), and corresponding temperature dependence of magnetization around T_{N2} along *c* axis for TbCrO₃ crystals (Bottom panel).