Electronic Supplementary Information

Self-powered Multifunctional UV and IR Photodetector as Artificial Electronic Eye

Yinben Guo^a, Yaogang Li^b, Qinghong Zhang^{b*}, Hongzhi Wang^{a*}

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

College of Materials Science and Engineering, Donghua University, Shanghai

201620, People's Republic of China.

^bEngineering Research Center of Advanced Glasses Manufacturing Technology,

Ministry of Education, Donghua University, Shanghai 201620, People's Republic of

China.

Corresponding Author

* Tel: +86-21-67792881; fax: +86-21-67792855. E-mail address:

zhangqh@dhu.edu.cn (Q. H. Zhang), wanghz@dhu.edu.cn (H. Z. Wang).

Figure S1. Digital photographs of conductivity test process of the RGO film using a four-point probe system.

Figure S2. Short-circuit current of TENG after 12000 contact-separation cycles

Figure S3. XRD pattern of ZnO thin layer

Figure S4. Dark and photocurrents of MSM UV photodetector with (a) visible light illumination, (b) IR illumination, at 5 V forward and reverse bias.

Figure S5. UV-Vis transmission spectrum of glass and ZnO coated glass.

Figure S6. The digital picture of the integrated electronic eye (the minimum scale on the ruler is 1 mm).

Photodetector	Wavelength(nm)	R (A/W)	D*(1012 Jones)	Response time	Ref
				(rise/decay time)	
Ag-ZnO-Ag	365	0.25	4.2	10.3 s/18.1 s	This work
ZnO/SnO ₂	300	-	-	32.2 s/7.8 s	S1
Cu NW/ZnO 360	360	0.26 ×10 ⁻³	-	< 0.5 s/>30 s> 30 s	S2
ZnO NWs/Au	365	0.40	-	0.13 s/0.40 s	S3
Au1–ZnO–Au2	<400	0.02	-	-	S4
Pt-GaN-Ni	<400	0.03	1.78	-	S5
TiO ₂ -PANI	320	0.36 ×10 ⁻²	0.39	3.8 ms/30.7 ms	S6
SnO ₂ /NiO	<400	-	-	17 s / 9 s	S7
TiO ₂ /NiO	350	0.67 ×10 ⁻³	1.1 ×10 ⁻²	1.2 s/7.1 s	S8
Ni/TiO ₂ /Ni	260	889.6	-	13.34 ms/11.43s11.4\$	
Bi/WS ₂ /Si	635	0.42	13.6	<100 ms/-	S10
Bi ₂ Te ₃ /Si	635	1	0.25	<100 ms/-	S11

Table S1 Comparison of the characteristic parameters of different photodetector

Reference

- S1. W. Tian, T. Zhai, C. Zhang, S. L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg and Y. Bando, *Adv. Mater.*, 2013, 25, 4625.
- S2. F. Teng, L. X. Zheng, K. Hu, H. Y. Chen, Y. M. Li, Z. M. Zhang and X. S. Fang, J. Mater. Chem. C, 2016, 4, 8416.
- S3. Y. Zeng, Z. Ye, B. Lu, W. Dai and X. Pan, Appl. Phys. A, 2016, 122, 296.
- S4. H. Y. Chen, K. W. Liu, X. Chen, Z. Zhang, M. Fan, M. Jiang, X. H. Xie, H. F. Zhao and D. Z. Shen, *J. Mater. Chem. C*, 2014, 2, 9689.
- S5. M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai and Z. L. Wang, ACS Nano, 2016, 10, 1572.
- S6. L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen and X. Fang, ACS Appl. Mater. Interfaces, 2016, 8, 33924.
- S7. S. Huang, H. Wu, K. Matsubara, J. Cheng and W. Pan, *Chem. Commun.*, 2014, **50**, 2847.
- S8. L. Zheng, F. Teng, Z. Zhang, B. Zhao and X. Fang, J. Mater. Chem. C, 2016, 4, 10032.
- S9. X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei and S. Ruan, *Appl. Phys. Lett.*, 2009, **94**, 123502.
- S10. J. Yao, Z. Zheng, J. Shao and G. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 26701.
- S11. J. Yao, J. Shao, Y. Wang, Z. Zhao and G. Yang, Nanoscale, 2015, 7, 12535.