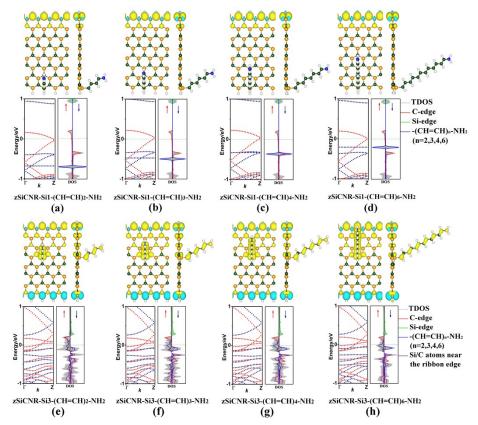
Electronic Supplementary Information

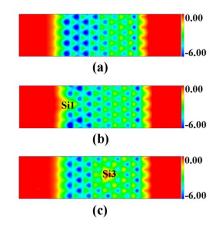
Covalent Surface Modification by the Electron-Donating/Accepting π -Conjugated Chain to Effectively Tune the Electronic and Magnetic Properties of Zigzag SiC Nanoribbons

Xiaopeng Shen, Guangtao Yu*, Zengsong Zhang, Jingwei Liu, Hui Li, Xuri Huang, Wei Chen*

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China


*To whom correspondence should be addressed. Email: yugt@jlu.edu.cn (G.Y.), w_chen@jlu.edu.cn (W.C.)

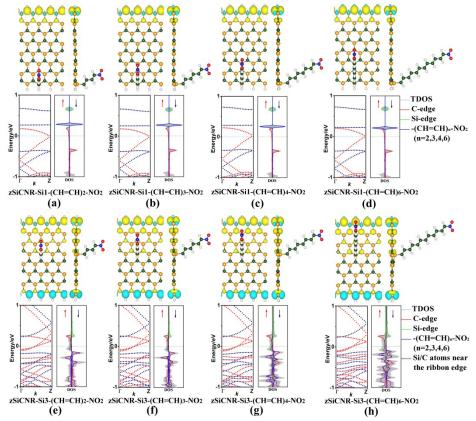
(I) $zSiCNR-Si1-(CH=CH)_n-NH_2$ and $zSiCNR-Si3-(CH=CH)_n-NH_2$ (n=2, 3, 4 and 6)


Table S1 The relative energies (ΔE) of different magnetic couplings to the ground state, magnetic moment of the ground state (M_{tot}), the formation energies (E_f), the electronic properties, the gap in the minority channel, and the charge of the substrate zSiCNR for the zSiCNR-Si1-(CH=CH)_n-NH₂ and zSiCNR-Si3-(CH=CH)_n-NH₂ (n=2, 3, 4 and 6) series. The NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

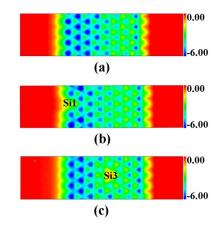
Systems	$\Delta E(meV)$			M _{tot}	$E_{\rm f}$	Electronic	The gap in minority	Charge of zSiCNR
	NM	FM	AFM	$(\mu_{\rm B})$	(eV)	properties	channel(eV)	(e)
zSiCNR-Si1-(CH=CH) ₁ -NH ₂	110.0	0.0*		1.000	-4.067	Half-metallicity	1.190	0.592
zSiCNR-Si1-(CH=CH) ₂ -NH ₂	129.6	0.0*		1.000	-4.036	Half-metallicity	1.246	0.608
zSiCNR-Si1-(CH=CH) ₃ -NH ₂	124.9	0.0*		1.000	-4.021	Half-metallicity	1.250	0.613
zSiCNR-Si1-(CH=CH) ₄ -NH ₂	117.2	0.0*		1.000	-4.007	Half-metallicity	1.253	0.609
zSiCNR-Si1-(CH=CH) ₆ -NH ₂	117.1	0.0*		1.000	-4.023	Half-metallicity	1.102	0.618
zSiCNR-Si3-(CH=CH)1-NH2	189.4	21.5	0.0	1.000	-2.078	Half-metallicity	0.344	0.566
zSiCNR-Si3-(CH=CH) ₂ -NH ₂	207.5	2.4	0.0	1.000	-2.089	Half-metallicity	0.350	0.504
zSiCNR-Si3-(CH=CH) ₃ -NH ₂	173.6	1.7	0.0	1.000	-2.091	Half-metallicity	0.344	0.518
zSiCNR-Si3-(CH=CH) ₄ -NH ₂	173.7	2.6	0.0	1.000	-2.099	Half-metallicity	0.340	0.507
zSiCNR-Si3-(CH=CH) ₆ -NH ₂	177.1	1.3	0.0	1.000	-2.100	Half-metallicity	0.331	0.470

* represents $C(\uparrow)Si(0)$ spin coupling, where \uparrow and 0 mean the spin-up and zero local magnetic moments, respectively.

Figure S1. The geometry, band structure and corresponding DOS: (a) ~ (d) for zSiCNR-Si1-(CH=CH)_n-NH₂ and (e) ~ (h) for zSiCNR-Si3-(CH=CH)_n-NH₂ (n=2, 3, 4, 6). The yellow and blue colors in the geometrical structures represent the spin-up and spin-down orientations of the unpaired electrons, respectively. The red and blue dotted lines in the band structures denote the spin-up (\uparrow) and spin-down (\downarrow) channels, respectively. The Fermi-level is set as zero and indicated by the green dotted line. Note that for the substrate zSiCNR, four units are included in the used supercell.


Figure S2. The distribution of electrostatic potential in the nanoribbon plane for (a) the pristine 8-zSiCNR, (b) zSiCNR-Si1-(CH=CH)₆-NH₂, and (c) zSiCNR-Si3-(CH=CH)₆-NH₂. Note that the used cross section to the plot of electrostatic potential lies near the SiC nanoribbon surface with a distance of ca. 0.2 Å between them.

(II) zSiCNR-Si1-(CH=CH)_n-NO₂ and zSiCNR-Si3-(CH=CH)_n-NO₂ (n=2, 3, 4 and 6)


Table S2 The relative energies (ΔE) of different magnetic couplings to the ground state, magnetic moment of the ground state (M_{tot}), the formation energies (E_f), the electronic properties, the gap in the minority channel, and the charge of the substrate zSiCNR for the zSiCNR-Si1-(CH=CH)_n-NO₂ and zSiCNR-Si3-(CH=CH)_n-NO₂ (n=2, 3, 4 and 6) series. The NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

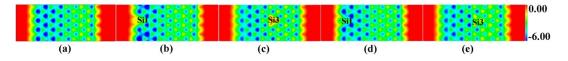
Systems	$\Delta E(meV)$			M _{tot}	E_{f}	Electronic	The gap in minority	Charge of zSiCNR
	NM	FM	AFM	(µ _B)	(eV)	properties	channel(eV)	(e)
zSiCNR-Si1-(CH=CH) ₁ -NO ₂	101.6	0.0*		1.000	-3.966	Half-metallicity	0.693	0.695
zSiCNR-Si1-(CH=CH)2-NO2	112.3	0.0*		1.000	-3.912	Half-metallicity	0.620	0.704
zSiCNR-Si1-(CH=CH) ₃ -NO ₂	114.5	0.0*		1.000	-3.940	Half-metallicity	0.605	0.672
zSiCNR-Si1-(CH=CH) ₄ -NO ₂	108.8	0.0*		1.000	-3.954	Half-metallicity	0.590	0.663
zSiCNR-Si1-(CH=CH) ₆ -NO ₂	110.3	0.0*		1.000	-3.943	Half-metallicity	0.556	0.656
zSiCNR-Si3-(CH=CH)1-NO2	198.1	2.3	0.0	1.000	-2.183	Half-metallicity	0.400	0.735
zSiCNR-Si3-(CH=CH)2-NO2	177.8	2.6	0.0	1.000	-2.161	Half-metallicity	0.400	0.727
zSiCNR-Si3-(CH=CH) ₃ -NO ₂	200.7	14.7	0.0	1.000	-2.179	Half-metallicity	0.400	0.708
zSiCNR-Si3-(CH=CH) ₄ -NO ₂	188.0	1.9	0.0	1.000	-2.170	Half-metallicity	0.384	0.704
zSiCNR-Si3-(CH=CH) ₆ -NO ₂	187.0	1.0	0.0	1.000	-2.138	Half-metallicity	0.357	0.691

* represents $C(\uparrow)Si(0)$ spin coupling, where \uparrow and 0 mean the spin-up and zero local magnetic moments, respectively.

Figure S3. The geometry, band structure and corresponding DOS: (a) ~ (d) for zSiCNR-Si1-(CH=CH)_n-NO₂ and (e) ~ (h) for zSiCNR-Si3-(CH=CH)_n-NO₂ (n=2, 3, 4, 6). The yellow and blue colors in the geometrical structures represent the spin-up and spin-down orientations of the unpaired electrons, respectively. The red and blue dotted lines in the band structures denote the spin-up (\uparrow) and spin-down (\downarrow) channels, respectively. The Fermi-level is set as zero and indicated by the green dotted line. Note that for the substrate zSiCNR, four units are included in the used supercell.

Figure S4. The distribution of electrostatic potential in the nanoribbon plane for (a) the pristine 8-zSiCNR, (b) zSiCNR-Si1-(CH=CH)₆-NO₂, and (c) zSiCNR-Si3-(CH=CH)₆-NO₂. Note that the used cross section to the plot of electrostatic potential lies near the SiC nanoribbon surface with a distance of ca. 0.2 Å between them.

(III) The modified zSiCNR systems with the direct adsorption of NH_2 or NO_2 groups at the Si1/Si3 sites (donated by zSiCNR-Sim-NH₂ or zSiCNR-Sim-NO₂ (m=1, 3)).


Table S3 The relative energies (ΔE) of different magnetic couplings to the ground state, magnetic moment of the ground state (M_{tot}), the formation energies (E_f), the electronic property, the band gap in the minority channel of the ground state and the charge of zSiCNR for zSiCNR-Sim-NH₂, zSiCNR-Sim-NO₂ (m=1, 3). The NM, FM and AFM here represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

Systems	$\Delta E(meV)$		M_{tot} (μ_B)	E _f (eV)	Electronic properties	The gap in minority	Charge of zSiCNR	
·	NM	FM	AFM				channel(eV)	(e)
zSiCNR-Si1-NH ₂	105.3	0.0*		1.000	-4.267	Half-metallicity	1.136	0.708
zSiCNR-Si3-NH ₂	182.6	1.5	0.0	1.000	-2.348	Half-metallicity	0.332	0.696
zSiCNR-Si1-NO ₂	105.0	0.0*		1.000	-2.702	Half-metallicity	0.937	0.800
zSiCNR-Si3-NO ₂	195.9	1.0	0.0	1.000	-1.051	Half-metallicity	0.400	0.848

TDOS C-edge Si-edge t 1 -NH2 srgy/eV Si/C atoms near the ribbon edge zSiCNR-Si1-NH₂ zSiCNR-Si3-NH2 (a) (b) TDOS C-edge Si-edge -NO2 Energy/eV Si/C atoms near the Energy/eV ribbon edge zSiCNR-Si3-NO₂ zSiCNR-Si1-NO2 (c) (d)

* represent the $C(\uparrow)Si(0)$ spin couplings. \uparrow and 0 mean the spin-up and zero local magnetic moment.

Figure S5. The geometry, spin density distribution, band structure and corresponding DOS: (a), (b) for zSiCNR-Sim-NH₂ and (c), (d) for zSiCNR-Sim-NO₂ (m=1, 3). The yellow and blue colors in the geometrical structures represent the spin-up and spin-down orientations of the unpaired electrons, respectively. The red and blue dotted lines in the band structures denote the spin-up (\uparrow) and spin-down (\downarrow) channels, respectively. The Fermi-level is set as zero and indicated by the green dotted line. Note that for the substrate zSiCNR, four units are included in the used supercell.

Figure S6 The distribution of electrostatic potential in the nanoribbon plane: (a) for the pristine 8-zSiCNR, (b), (c) for zSiCNR-Sim-NH₂ and (d), (e) for zSiCNR-Sim-NO₂ (m=1, 3). Note that the used cross section to the plot of electrostatic potential lies near the SiC nanoribbon surface with a distance of ca. 0.2 Å between them.

(IV) The linking of the π -conjugated -(CH=CH)₁-NH₂ and -(CH=CH)₁-NO₂

chains at the Si1 and Si3 sites of 8-zSiCNR(u) (denoted by zSiCNR(u)-Sim-(CH=CH)₁-NH₂ and zSiCNR(u)-Sim-(CH=CH)₁-NO₂ (m=1, 3; u= 5, 6), and u means that the number of the included units in the supercell for the substrate zSiCNR).

In this section, we performed the correlative computations to investigate the effect of the concentration of adsorbed π -conjugated chain on the electronic and magnetic properties of modified zSiCNR systems by linking the -(CH=CH)₁-NH₂ or -(CH=CH)₁-NO₂ chain at the representative edge Si1 and inner Si3 sites. We can understand that when increasing the number of the included unit of substrate zSiCNR in the supercell, the concentration of adsorbed π -conjugated chain is reduced for the composite systems. Here, we sampled the more five and six units included in the supercell for the substrate zSiCNR. For convenience, all these modified systems are named as zSiCNR(u)-Sim-(CH=CH)₁-NH₂ and zSiCNR(u)-Sim-(CH=CH)₁-NO₂ (m=1, 3; u= 5, 6), in which u represents the number of the included units in the supercell for the substrate zSiCNR.

Our computed results reveal that when unit number of substrate zSiCNR is increased from original four to five units, the sole FM half-metallic behaviors can be maintained in the modified zSiCNR systems by -(CH=CH)₁-NH₂ at the Si1 site, where the unpaired spin mainly distributes at the C edge and the unpaired spin of Si edge is still inhibited (Figure S7a). When further increasing the unit number to six for the substrate zSiCNR, the half-metallic behavior can be still sustained in the modified zSiCNR systems by -(CH=CH)₁-NH₂ at the Si1 site, yet the FM ground state is converted into the AFM state, where the unpaired spin of C edge is still kept and the that of Si edge is partially recovered (Figure S7e). Their computed DOS results reveal that the C edge dominates the half-metallicity in zSiCNR(5)-Si1-(CH=CH)₁-NH₂, while the half-metallic behavior in zSiCNR(6)-Si1-(CH=CH)₁-NH₂ can be determined by not only the C edge but also the Si edge of zSiCNR (Figures S7a and S7e). Comparatively, when increasing the unit number from original four to five to even six units, the sole AFM half-metallic behavior can be uniformly maintained in the modified zSiCNR systems by -(CH=CH)₁-NH₂ at the Si3 site. The computed DOS

results show that the edge Si atoms, the related C atoms at the side of C edge and the conjugated chain are mainly responsible for the half-metallicities in zSiCNR(5)-Si3-(CH=CH)₁-NH₂ and zSiCNR(6)-Si3-(CH=CH)₁-NH₂ (Figures S7c and S7g).

The similar situation can be also observed in the modified zSiCNR systems by $(CH=CH)_1$ -NO₂ at the Si1/Si3 sites. Specifically, our computed results reveal that when increasing the unit number *u* from four to five to six, the half-metallic behavior can be kept in the zSiCNR(u)-Si1-(CH=CH)_1-NO₂ series, accompanied by the conversion for the FM to AFM states (Figures S7b and S7f). Additionally, the sole AFM half-metallic behavior can be also sustained in the zSiCNR(u)-Si3-(CH=CH)_1-NO₂ series (Figures S7d and S7h). Our computed results show that the Si edge and the related C atoms at the side of the C edge are mainly responsible for the half-metallicities for all these four systems including zSiCNR(5)-Si1-(CH=CH)_1-NO₂, zSiCNR(6)-Si1-(CH=CH)_1-NO₂, as illustrated in Figure S7.

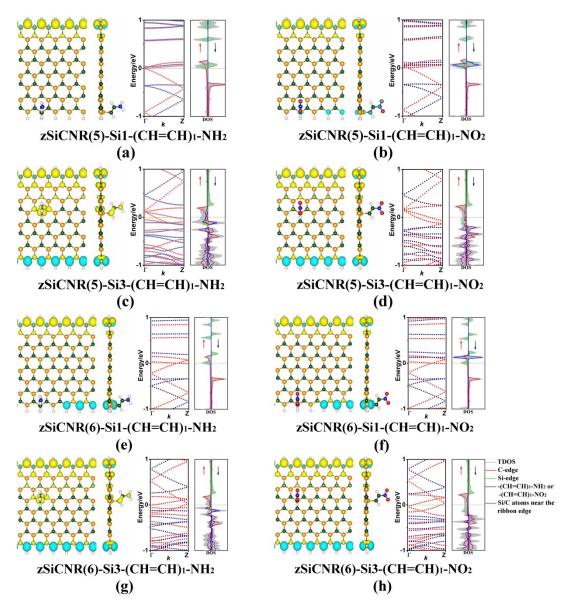
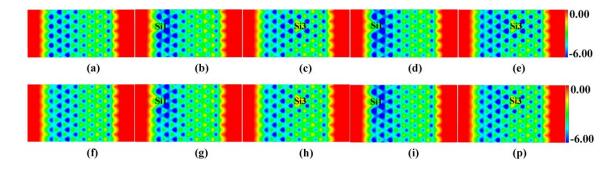

Obviously, along with the reduction of the concentration of π -conjugated chain, the magnetic degeneracy of zSiCNR can be still broken, which is also owing to the change of electrostatic potential in the ribbon plane resulted from the occurrence of the electron transfer (0.541 ~0.757 |e|) between the substrate zSiCNR and the conjugated chain (Figure S8 and Table S4). In these modified zSiCNR systems, the sole FM or AFM half-metallicity can be also achieved, where the large semiconducting gaps in minority channel with ranging from 0.367 to 0.531 eV can be observed (Table S4), indicating their considerably robust half-metallic behaviors.

Table S4 The relative energies (ΔE) of different magnetic couplings to the ground


state, magnetic moment of the ground state (M_{tot}), the formation energies (E_f), the electronic property, the band gap in the minority channel of the ground state and the charge of zSiCNR for zSiCNR(u)-Sim-(CH=CH)₁-NH₂ and zSiCNR(u)-Sim-(CH=CH)₁-NO₂ (m=1, 3; u=5, 6). The NM, FM and AFM here represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

Systems	$\Delta E(meV)$			M _{tot} (µ _B)	E _f (eV)	Electronic properties	The gap in minority	Charge of zSiCNR
	NM	FM	AFM				channel(eV)	(e)
zSiCNR(5)-Si1-(CH=CH) ₁ -NH ₂	92.8	0.0*		1.000	-4.030	Half-metallicity	0.375	0.585
zSiCNR(5)-Si3-(CH=CH)1-NH2	222.3	1.3	0.0	1.000	-2.112	Half-metallicity	0.367	0.541
zSiCNR(5)-Si1-(CH=CH) ₁ -NO ₂	103.0	59.0	0.0	1.000	-3.896	Half-metallicity	0.378	0.725
zSiCNR(5)-Si3-(CH=CH) ₁ -NO ₂	239.4	30.3	0.0	1.000	-2.271	Half-metallicity	0.465	0.717
zSiCNR(6)-Si1-(CH=CH)1-NH2	144.4	32.7	0.0	1.000	-4.009	Half-metallicity	0.531	0.591
zSiCNR(6)-Si3-(CH=CH) ₁ -NH ₂	261.4	8.7	0.0	1.000	-2.171	Half-metallicity	0.384	0.556
zSiCNR(6)-Si1-(CH=CH)1-NO2	153.7	32.0	0.0	1.000	-3.918	Half-metallicity	0.463	0.739
zSiCNR(6)-Si3-(CH=CH) ₁ -NO ₂	298.2	30.7	0.0	1.000	-2.301	Half-metallicity	0.496	0.757

* represent the $C(\uparrow)Si(0)$ spin couplings. \uparrow and 0 mean the spin-up and zero local magnetic moment.

Figure S7 The geometry, spin density distribution, band structure and corresponding DOS for zSiCNR(u)-Sim-(CH=CH)₁-NH₂ and zSiCNR(u)-Sim-(CH=CH)₁-NO₂ (m=1, 3; u=5, 6). The yellow and blue colors in the geometrical structures represent the spin-up and spin-down orientations of the unpaired electrons, respectively. The red and blue dotted lines in the band structures denote the spin-up (\uparrow) and spin-down (\downarrow) channels, respectively. The Fermi-level is set as zero and indicated by the green dotted line.

Figure S8 The distribution of electrostatic potential in the nanoribbon plane: (a) and (f) for the pristine 8-zSiCNR(u) (u=5, 6) as well as (b)~(e) and (g)~(p) for zSiCNR(u)-Sim-(CH=CH)_1-NH_2 and zSiCNR(u)-Sim-(CH=CH)_1-NO_2 (m=1, 3; u=5, 6). Note that the used cross section to the plot of electrostatic potential lies near the SiC nanoribbon surface with a distance of ca. 0.2 Å between them.