Electronic Supplementary Information

Calculations for the Grüneisen parameter in Cu₈GeSe₆:

The Grüneisen parameter is estimated by ¹

$$\kappa_L = A \frac{M_{avg} \Theta_D^3 \delta}{\gamma^2 n^{2/3} T} \quad , \quad (1)$$

where κ_L is the lattice thermal conductivity, M_{avg} is the average mass per atom, δ^3 is the average volume per atom, n is the number of atoms in the primitive unit cell (n = 90 for Cu₈GeSe₆), and A is a collection of physical constants ($A = 3.1 \times 10^{-6}$ if κ is in W m⁻¹ K⁻¹, M_{avg} is in amu, and δ is in Angstroms).

Table S1 Chemical composition of Cu_8GeSe_6 , $Cu_8GeSe_{5.1}Te_{0.9}$ and $Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9}$ measured by EDS at 10 randomly selected locations.

Tommar composition. Cugoese										
Actual cor	npositio	n: Cu _{7.95}	GeSe _{5.98}							
<u>elements</u>			Atomic	percent	concenti	ation (n	ormalize	ed to 100	<u>%)</u>	
Cu	53.28	53.35	53.05	53.38	53.21	53.19	53.46	53.26	53.32	52.92
Ge	6.49	6.81	6.59	6.75	6.53	6.74	6.82	6.77	6.72	6.75
Se	40.24	40.02	40.36	39.87	40.26	40.08	39.72	39.96	39.96	40.29
Nominal composition: Cu ₈ GeSe _{5.1} Te _{0.9}										
Actual composition: Cu _{7.86} GeSe _{5.03} Te _{0.88}										
<u>elements</u>	Atomic percent concentration (normalized to 100%)									
Cu	52.99	54.19	53.74	53.56	52.12	53.48	52.98	53.23	53.11	53.09
Ge	6.94	6.70	6.98	7.00	6.60	6.62	6.82	6.60	6.59	6.83
Se	34.22	33.14	33.47	33.45	35.24	33.90	34.63	33.87	34.57	33.92
Те	5.85	5.98	5.81	5.99	6.04	6.01	5.98	6.30	5.73	6.15
Nominal composition: Cu _{7.6} Ag _{0.4} GeSe _{5.1} Te _{0.9}										
Actual composition: Cu _{7.45} Ag _{0.37} GeSe _{5.04} Te _{0.86}										
<u>elements</u>		Atomic percent concentration (normalized to 100%)								
Cu	50.33	50.44	50.30	50.39	50.87	50.58	50.63	50.72	50.70	50.66
Ag	2.65	2.55	2.44	2.43	2.49	2.50	2.51	2.58	2.48	2.51
Ge	6.78	6.71	6.86	6.75	6.73	6.86	6.73	6.84	6.68	6.92
Se	34.47	34.53	34.35	34.37	34.10	34.19	34.25	34.00	34.19	34.00
Те	5.78	5.78	5.80	5.82	5.81	5.86	5.88	5.87	5.96	5.92

Table S2 Parameters used to fit the heat capacity (C_P) data of Cu₈GeSe₆, Cu₈GeSe_{5.1}Te_{0.9}, and Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9} by using a Debye and two Einstein modes. R^2 stands for the correlation coefficient. The Debye temperature (Θ_D) is derived by the equation $\Theta_D = (12\pi^4 p R/5\beta)^{1/3}$, where *R* is the gas constant and *p* is the number of atoms in each molecule (p = 15 for our samples).

Fitting parameters	Cu ₈ GeSe ₆	$Cu_8GeSe_{5.1}Te_{0.9}$	Cu _{7.6} Ag _{0.4} GeSe _{5.1} Te _{0.9}
φ (10 ⁻³ Jmol ⁻¹ K ⁻²)	26.68±2.79	49.76±3.01	42.01±2.79
β (10 ⁻⁴ Jmol ⁻¹ K ⁻⁴)	10.5 ± 0.332	11.1±0.332	12.1±0.318
$A (\text{Jmol}^{-1}\text{K}^{-1})$	16.335±0.597	14.094 ± 0.642	14.196 ± 0.548
$\Theta_{El}\left(\mathrm{K} ight)$	36.426±0.419	35.953±0.515	33.812±0.363

B (Jmol ⁻¹ K ⁻¹)	78.851±1.697	77.774±1.584	79.023±1.457
$\Theta_{E2}(\mathrm{K})$	82.110±0.920	79.854±0.921	76.170±0.765
$\Theta_{D}(\mathbf{K})$	302.81	297.3	288.83
R^2	0.99994	0.99988	0.99986
χ^2	0.0000585	0.000111	0.000148

Table S3 Parameters used to fit the heat capacity (C_P) data of Cu₈GeSe₆ by using different methods (one Debye and one Einstein modes, one Debye and two Einstein modes, one Debye and three Einstein modes).

	,			
Fitting parameters	One Debye+	One Debye+		
	One Einstein	Three Einstein		
φ (10-3Jmol-1K-2)	80.43±14.62	11.38±3.76		
β (10 ⁻⁴ Jmol ⁻¹ K ⁻⁴)	19.2±0.822	8.7±0.385		
A (Jmol ⁻¹ K ⁻¹)	46.088±2.303	4.202±1.399		
$\Theta_{El}(\mathbf{K})$	53.908±1.084	26.722±2.021		
B (Jmol ⁻¹ K ⁻¹)		24.552±1.844		
$\Theta_{E2}(\mathrm{K})$		47.957±2.773		
C (Jmol ⁻¹ K ⁻¹)		82.919±1.792		
$\Theta_{E3}(\mathrm{K})$		92.645±2.267		
$\Theta_D(\mathbf{K})$	247.63	322.40		
R^2	0.99618	0.99998		
χ^2	0.00362	0.0000173		

Table S4 Parameters used to fit the lattice thermal conductivity (κ_L) of Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9}.

Fitting parameters	Cu _{7.6} Ag _{0.4} GeSe _{5.1} Te _{0.9}
<i>L</i> (μm)	0.634
$A(10^{-41} \mathrm{s}^3)$	14.304
<i>B</i> (10 ⁻¹⁷ s K ⁻¹)	2.8848
$C_1 (10^{36} \text{ s}^{-3})$	0.1206
ω_l (THz)	3.442
$C_2 (10^{36} \text{ s}^{-3})$	19.55
ω_2 (THz)	6.889
R^2	0.99800
χ^2	0.005987

Fig. S1 Temperature dependence of the heat capacity for Cu_8GeSe_6 , $Cu_8GeSe_{5.1}Te_{0.9}$ and $Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9}$ at constant pressure.

Fig. S2 XRD patterns for Cu₈GeSe₆ at 293K and 373K.

Fig. S3 Scanning electron microscopy (SEM) images of $Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9}$. (a) Backscattered electron imaging map, (b) all elements, (c) Te, (d) Ag, (e) Se, (f) Ge, and (g) Cu mappings.

Fig. S4 $(\alpha h \upsilon)^2$ as a function of photon energy $h\upsilon$. An extrapolation of the spectra (red lines) is used to estimate optical band gap values for Cu₈GeSe₆, Cu₈GeSe_{5.1}Te_{0.9} and Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9}.

Fig. S5 Calculated band structure of low temperature phase Cu_8GeSe_6 using revised PBE + 6U method. The Fermi level is set to zero. The calculated band structure indicates a direct transition. The CBM is mainly dominated by Se-4s and 4p bands, and the VBM is mainly from the Cu-3d and Se-4p bands, which indicates a direct allowed transition.

Fig. S6 Total charge density map of low-temperature phase Cu_8GeSe_6 . The plot is on the Se(6)-Cu(5)-Se(3) plane. The unit is e/Å³. The contour lines are plotted from 0 to 0.50 e/Å³ with 0.05 e/Å³ intervals.

Fig. S7 Measured C_p/T versus T^2 for Cu₈GeSe_{5.1}Te_{0.9} and Cu_{7.6}Ag_{0.4}GeSe_{5.1}Te_{0.9} (black

squires). The red solid line represents the fitted curve by using one Debye mode and two Einstein modes. The other lines represent the electronic term φ , Debye term β , and two Einstein terms, Θ_{E1} and Θ_{E2} .

Fig. S8 Measured C_p/T versus T^2 for Cu₈GeSe₆ (black squires). The red solid line represents the fitted curve by using different methods, (a) one Debye and one Einstein mode, (b) one Debye and three Einstein modes.

References

1 D. T. Morelli, V. Jovovic, J. P. Heremans, *Phys. Rev. Lett.* 2008, **101**, 035901.