Domino Ring-Opening Cyclization (DROC) of Activated Aziridines and Epoxides with Nitrones via Dual-Catalysis "On Water"

Imtiyaz Ahmad Wani, Masthanvali Sayyad and Manas K. Ghorai*

Department of Chemistry, Indian Institute of Technology, Kanpur 208016

E-mail: mkghorai@iitk.ac.in

Supporting Information

Table of Contents

SL No	Contents	Page No
1	General experimental	02
2	X-ray crystal structures	03
3	X-ray crystallographic analysis of 3a, 6a and 9a	05
4	References	07
5	Spectral data	09
6	${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectra	31
7	HPLC chromatograms	69

1. General experimental

Analytical thin layer chromatography (TLC) was carried out using silica gel $60 \mathrm{~F}_{254}$ pre-coated plates. Visualization was accomplished with UV lamp or I_{2} stain. Silica gel 230-400 mesh size were used for column chromatography using the combination of ethyl acetate and petroleum ether as an eluent. Unless noted, all reactions were carried out in oven-dried glassware under an atmosphere of nitrogen using anhydrous solvents. Where appropriate, solvents and all reagents were purified prior to use following the guidelines of Perrin and Armarego ${ }^{1}$ and Vogel. ${ }^{2}$ 2-aryl-1tosylaziridines were prepared from different styrene derivatives following a reported procedure. ${ }^{3}$ Chiral 2-phenyl-1-tosylaziridine ${ }^{4}$ were prepared from corresponding amino alcohol following a reported procedure. All the nitrones (2a-l) were prepared following the reported procedure. ${ }^{5 \mathrm{a}, \mathrm{b}, \mathrm{c}}$ All commercial reagents were used as received without prior purification unless mentioned. IR spectra were recorded in potassium bromide (KBr) pellet. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} N M R$) spectra were recorded at 500 MHz at the temperature of $55^{\circ} \mathrm{C}$. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethyl silane ($\delta 0.00$). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet (s), doublet (d), double doublet (dd), triplet (t , quartet (q) or multiplet (m). Carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\right)$ spectra were recorded at 125 MHz . Mass spectra (MS) were obtained using FAB and ESI mass spectrometer (TOF). Melting point was determined using a hot stage apparatus and are reported as uncorrected. Enantiomeric ratios (er) were determined by HPLC using Chiralcel OD-H, and Lux 5u Cellulose 2 analytical column (detection at 254 nm). Optical rotations were measured using a 6 mL cell with a 1.0 dm path length and are reported as $[\alpha]^{25} \mathrm{D}\left(c\right.$ in gm per 100 mL solvent) at $25^{\circ} \mathrm{C}$.

General Experimental Procedure for the Synthesis of Oxadiazinane/ Dioxazinane. A clean seal tube was charged with aziridine ($0.100 \mathrm{mmol}, 1.0$ equiv.)/ epoxide ($0.200 \mathrm{mmol}, 1.0$ equiv.), nitrone (0.150 mmol, 1.5 equiv.), anhydrous $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%$) and quaternary ammonium salt $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ in water (2.0 mL). The reaction mixture was then stirred at $80{ }^{\circ} \mathrm{C}$ for appropriate time. After complete consumption of starting compound (monitored by TLC), the aqueous layer was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by flash column chromatography on silica gel (230-400 mesh) using ethyl acetate in petroleum ether as the eluent to give the pure products.

2. X-ray crystal structures:

Figure 1. ORTEP diagram of compound 3a (30\% thermal ellipsoids)

Figure 2. ORTEP diagram of compound $\mathbf{6 a}$ (30% thermal ellipsoids)

Figure 3. ORTEP diagram of compound 9a (30\% thermal ellipsoids)

3. X-ray crystallographic analysis of $3 \mathrm{a}, 6 \mathrm{a}$ and 9a:

The crystals used in the analyses were glued to a glass fiber and mounted on SMART APEX diffractometer. The instrument was equipped with CCD area detector and data were collected using graphite-monochromated Mo K α radiation $(\lambda=0.71069 \AA)$ at low temperature $(100 \mathrm{~K})$. Cell constants were obtained from the least-squares refinement of three-dimensional centroids through the use of CCD recording of narrow ω rotation frames, completing almost all-reciprocal space in the stated θ range. All data were collected with SMART 5.628 and were integrated with the SAINT ${ }^{6}$ program. An empirical absorption correction was applied to collect reflections with SADABS ${ }^{7}$ using XPREP ${ }^{8}$. The structure was solved using SIR- 97^{9} and refined using SHELXL97^{10}. The space group of the compounds was determined based on the lack of systematic absence and intensity statistics. Full matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All the hydrogen atoms are fixed by using geometrical constrains using idealized geometries and have been defined isotropically.

Table 1. Data collection and structure refinement parameters for 3a, 6a and 9a.

Compound	3a	6a	9 a
Formula	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
Formula weight	408.50	450.58	255.31
CCDC No.	1489202	1518181	1489201
Crystal color, habit	White, block	White, Prism	White, block
T/K	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / n($ no. 14)	P-1	P21 (no. 4)
$a / \AA{ }^{\text {a }}$	9.9562(6)	8.774(5)	5.4942(17)
b / \AA	12.5624(7)	10.058(5)	18.284(6)
c/Å	16.3026(10)	14.512(5)	6.781(2)
$\alpha /^{\circ}$	90.00	96.541(5)	90.00
$\beta 1^{\circ}$	92.165(2)	105.912(5)	103.824(5)
$\gamma 1^{10}$	90.00	108.607(5)	90.00
V / \AA^{3}	2037.6(2)	1138.4(9)	661.5(4)
Z	4	2	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.332	1.315	1.282
μ / mm^{-1}	0.186	0.173	0.084

Reflections measured	20220	17573	4022
Unique reflections	3753	4399	2272
Reflections used $I>2 \sigma(I)]$	5051	5693	2817
$R_{1}{ }^{a}, w R_{2}{ }^{b}[I>2 \sigma(I)]$	$R_{1}=0.0467^{a}$	$R_{1}=0.0454^{a}$	$R_{1}=0.0555^{a}$
	$w R_{2}=0.1073^{b}$	$w R_{2}=0.1040^{b}$	$w R_{2}=0.1348^{b}$
$R_{1}{ }^{a}, w R_{2}{ }^{b}($ all data $)$	$R_{1}=0.0721^{a}$	$R_{1}=0.0669^{a}$	$R_{1}=0.0765^{a}$
$w R_{2}=0.1216^{b}$	$w R_{2}=0.1133^{b}$	$w R_{2}=0.1826^{b}$	
GOF on F^{2}			

4. References.

1. D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals; Third Edition, Pergamon Press: Oxford, 1988.
2. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, In Vogel's Textbook of Practical Organic Chemistry; Fifth Edition, Longman Group, U.K. Ltd., 1989.
3. J. U. Jeong, B. Tao, I. Sagasser, H. Henniges, K. B. Sharpless, J. Am. Chem. Soc. 1998, 120, 6844.
4. (a) M. Cernerud, H. Adolfsson, C. Moberg, Tetrahedron: Asymm. 1997, 8, 2655; (b) M.
K. Ghorai, A. Kumar, D. P. Tiwari, J. Org. Chem. 2010, 75, 137.
5. (a) R. P. Stalin, S. Vipender, E. Lars, S. Nicklas, Org. Lett. 2015, 17, 4506; (b) O. Bortolini, I. Mulani, A. De Nino, L. Maiuolo, M. Nardi, B. Russo, S. Avnet, Tetrahedron 2011, 67, 5635; (c) M. Zhong, S. Sun, J. Cheng, Y. Shao, J. Org. Chem., 2016, 81, 10825.
6. SAINT+ 6.02ed.; Bruker AXS, Madison, WI, 1999.
7. Sheldrick, G. M. SADABS, Empirical Absorption Correction Program, University of Göttingen, Göttingen, Germany, 1997.
8. XPREP, 5.1ed. Siemens Industrial Automation Inc., Madison, WI, 1995.
9. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115.
10. Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997.

5. Spectral Data:

2-Methyl-3,6-diphenyl-4-tosyl-1,2,4-oxadiazinane (3a). The general method described above was followed when aziridine $\mathbf{1 a}(27.3 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}(20.5 \mathrm{mg}, 0.150$ $\mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford 3a ($35.9 \mathrm{mg}, 0.088 \mathrm{mmol}$) as a white solid in 88% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether), mp 124-126 ${ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2924,1597,1493,1449,1341,1159,1106,1089,952$, 814, 736, 698, 672, 615, 545; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=11.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 7.18$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.4,41.1,45.5,72.4,75.0,126.5,127.3,128.2,128.4,128.5,128.6$, 128.7, 129.0, 129.7, 136.7, 137.7, 143.5; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 409.1586$, found 409.1581.

4-Methyl-N-(2-oxo-2-phenylethyl)benzenesulfonamide (4a). white solid, mp $122-124{ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3280,2923,2852,1687,1596,1580,1493,1449,1412,1345,1325,1234,1185$, $1160,1092,1021,987,930,817,758,672,651,547,{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H})$, $4.45(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.5,48.7,127.2,127.9,129.0,129.9,133.8,134.4,136.2,143.8$, 192.6; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 290.0851$, found 290.0859 .

6-(2-Bromophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3b). The general method described above was followed when aziridine $\mathbf{1 b}(35.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for

45 minutes to afford $\mathbf{3 b}$ ($38.96 \mathrm{mg}, 0.080 \mathrm{mmol}$) as a gummy liquid in 80% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2956,2924,2853,1742,1641,1597,1493$, $1464,1377,1345,1304,1261,1186,1162,1099,1020,989,961,910,861,861,751,698,671$, $613,589,558,542:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=13.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.5,41.1,44.1,71.4,76.3,122.1,127.5,127.8,128.2$, $128.4,128.5,129.7,129.8,132.3,132.8,136.8,137.4,137.8,143.6$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 487.0691$, found 487.0694.

6-(4-Fluorophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3c). The general method described above was followed, when aziridine $\mathbf{1 c}(29.1 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a (20.5 mg, 0.150 mmol$)$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 c}(35.86 \mathrm{mg}, 0.084 \mathrm{mmol})$ as a viscuss liquid in 84% yield: $R_{f} 0.6(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3708,3526,3017,2849,2881,1635,1488$, $1124,1103,1029,830,568:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=13.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{dd}, J=10.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.8(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 21.6,40.0,45.4,71.2,73.3,115.5,115.6,115.7,115.8,127.2,127.3,127.7,127.8,128.2,128.4$, 128.6, 129.0, 129.8, 134.5, 136.2, 136.5, 137.4, 143.6, 143.7, 161.7, 161.8, 163.4, 163.8; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 427.1492$, found 427.1493.

6-(4-Chlorophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3d). The general method described above was followed when aziridine $\mathbf{1 d}(30.7 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 d}(39.8 \mathrm{mg}, 0.090 \mathrm{mmol})$ as a gummy liquid in 90% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3061,2924,2853,1598,1492,1449,1405$, $1342,1305,1161,1111,1090,1065,1015,988,958,913,868,814,741,700,671,621,589,557$, 542: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}$, $J=14.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 20.1,40.0,44.3,70.7,75.0,126.2,126.8,127.2,127.4,127.5,127.8$, 128.7, 133.5, 135.4, 135.5, 136.6, 142.6; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 443.1196, found 443.1195.

6-(4-Bromophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3e). The general method described above was followed when aziridine $\mathbf{1 e}(35.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}(20.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 e}(40.90 \mathrm{mg}, 0.083 \mathrm{mmol})$ as a thick liquid in 83% yield: $R_{f} 0.8(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3442,3062,2956,2924,2854,1739,1597,1490$, $1454,1403,1341,1304,1262,1161,1110,1088,1070,989,959,912,866,740,699,675,616$, $589,577,521:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.98 (dd, 10.8, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (dd, $J=10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=10.8,4.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.7,36.3,40.51,67.0,71.4,117.8$,
$122.5,123.4,123.5,123.7,124.9,127.0,131.8,132.1,132.9,137.8,138.8$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 487.0691$, found 487.0692.

6-(3-bromophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3f). The general method described above was followed when aziridine $\mathbf{1 f}(35.2 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 f}(41.8 \mathrm{mg}, 0.086 \mathrm{mmol})$ as a gummy liquid in 86% yield: $R_{f} 0.8$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3442,3062,2923,2853,1597,1570,1493$, $1449,1428,1342,1305,1261,1198,1190,1160,1071,1018,997,918,881,862,741,695,615$, 592, 545: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=14.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.43(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.4,41.2,45.3,71.8,76.3,122.7,124.7,127.3,128.2,128.4,128.5$, 129.6, 129.7, 130.2, 131.6, 136.5, 137.6, 140.2, 143.6; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 487.0691$, found 487.0683 .

6-(2-Fluorophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3g). The general method described above was followed when aziridine $\mathbf{1 g}(29.1 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 g}(36.3 \mathrm{mg}, 0.085 \mathrm{mmol})$ as a gummy liquid in 85% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3848,3416,2917,2849,1634,1491,1456$, $1161,1089,670:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, J=13.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.0,1 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,41.1,44.5,66.9,76.4,115.3,115.5,124.5,127.4,127.8$, $128.2,128.5,129.7,129.8,136.7,137.9,143.6$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 427.1492, found 427.1490.

6-(3-Chlorophenyl)-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3h). The general method described above was followed when aziridine $\mathbf{1 h}(30.7 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 h}(33.6 \mathrm{mg}, 0.076 \mathrm{mmol})$ as a gummy liquid in 76% yield: $R_{f} 0.7$ (10% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,2924,2854,1738,1599,1575,1494$, $1449,1432,1342,1305,1203,1161,1107,1090,1064,1018,988,958,865,862,814,784,743$, $695,616,593,546 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{dd}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,41.2,45.3,72.0,76.3,124.5,126.6,127.3,128.3$, $128.4,128.5,128.6,129.7,130.0,134.7,136.5,137.7,140.0,143.7$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 443.1196$, found 443.1190.

2-Methyl-3-phenyl-6-(m-tolyl)-4-tosyl-1,2,4-oxadiazinane (3i). The general method described above was followed when aziridine $\mathbf{1 i}(29.7 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}$ (20.5 $\mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80{ }^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 i}$ ($36.8 \mathrm{mg}, 0.087 \mathrm{mmol}$) as a gummy liquid in 87% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2924,1597,1493,1449,1341,1159,1106,1089$, 952, 814, 736, 698, 672, 615, 545; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.89$ (s, 3H), $3.19(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{dd}, J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.82(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,21.6,41.1,45.4,72.1,75.7,123.6,127.3,127.6,127.9,128.2,128.5,128.55$, $128.6,129.2,129.4,129.8,136.4,137.5,138.3,143.6$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 423.1742$, found 423.1741 .

2-Methyl-3-phenyl-4-tosyl-6-(3-(trifluoromethyl)phenyl)-1,2,4-oxadiazinane (3j). The general method described above was followed when aziridine $\mathbf{1 j}$ ($34.1 \mathrm{mg}, 0.100 \mathrm{mmol}$) was reacted with nitrone 2a (20.5 mg, 0.150 mmol) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 j}$ ($36.6 \mathrm{mg}, 0.082 \mathrm{mmol}$) as a gummy liquid in 82% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2956,2854,1733,1598,1493,1450$, $1405,1327,1197,1163,1127,1092,1073,1019,989,957,907,837,812,762,739,701,673$, $613,587,554:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=14.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,41.1,45.2,71.6,75.4,114.0,123.5,125.3,127.3,128.2$, 128.3, 128.4, 128.5, 129.1, 129.7, 129.8, 131.0, 136.5, 137.6, 143.7; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 477.1460$, found 477.1468 .

2-Methyl-3-phenyl-4-tosyl-6-(2-(trifluoromethyl)phenyl)-1,2,4-oxadiazinane (3k). The general method described above was followed when aziridine $\mathbf{1 k}(34.1 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a (20.5 mg, 0.150 mmol) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 45 minutes to afford $\mathbf{3 k}$ ($31.7 \mathrm{mg}, 0.071 \mathrm{mmol}$) as a gummy liquid in 71% yield: $R_{f} 0.6$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3064,2956,2924,2854,1919,1744$,
$1641,1598,1492,1454,1402,1350,1314,1289,1261,1164,1121,1096,1056,1034,1019,987$, $933,913,864,815,770,739,715,698,644,616,588,558,542,525:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=13.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J$ $=12.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,40.8$, $45.7,67.3,75.4,123.0,125.2,125.7,127.4,128.2,128.3,128.5,128.6,129.8,132.3,136.5,136.9$, 137.7, 143.7; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 477.1460$, found 477.1450.

2-Methyl-6-(4-nitrophenyl)-3-phenyl-4-tosyl-1,2,4-oxadiazinane (3I). The general method described above was followed when aziridine $\mathbf{1 1}(31.8 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 45 minutes to afford $\mathbf{3 1}$ ($32.6 \mathrm{mg}, 0.072 \mathrm{mmol}$) as a gummy liquid in 72% yield: $R_{f} 0.6$ (10% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2957,2924,2853,1736,1600,1522,1493$, $1449,1401,1347,1305,1261,1161,1088,1066,1016,989,960,913,852,814,744,698,671$, $615,558,542:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, 17.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.14(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,41.2,45.7,72.0,76.5,123.8,127.2$, $127.3,128.3,128.4,128.5,129.8,136.4,137.5,143.8,145.2,148.0$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 454.1437$, found 454.1430 .
(3S,6S)-2-Methyl-3,6-diphenyl-4-(phenyIsulfonyl)-1,2,4-oxadiazinane (3m). The general method described above was followed when $(R) \mathbf{- 1 m}(25.9 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}$ $(20.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80{ }^{\circ} \mathrm{C}$ for 30
minutes to afford $\mathbf{3 m}(35.1 \mathrm{mg}, 0.089 \mathrm{mmol})$ as a gummy liquid in 89% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3449,3062,3031,2923,1602,1494,1447,1345$, $1311,1165,1103,1088,1029,988,957,910,866,806,741,719,697,652,638,578,548,519$, : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=13.7,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{dd}, J=12.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 5 \mathrm{H})$, $7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 41.0,45.5,72.5,76.1,126.5,127.2,127.9,128.2,128.4,128.5,128.6,129.0,132.7,136.5$, 137.8, 140.7; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 395.1429$, found 395.1415. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}=$ 79.26 (c $0.16, \mathrm{CHCl}_{3}$) for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n-hexane/i-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \operatorname{tR}(1)=10.22$ $\min ($ minor $), \mathrm{tR}(2)=14.49 \min ($ major $)$.

4-(Mesitylsulfonyl)-2-methyl-3,6-diphenyl-1,2,4-oxadiazinane (3n). The general method described above was followed when aziridine $1 \mathbf{n}(30.1 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a ($20.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 n}(37.1 \mathrm{mg}, 0.085 \mathrm{mmol})$ as a gummy liquid in 85% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3051,2824,2822,1588,1492,1455,1407$, $1332,1305,1261,1141,1070,1075,1025,978,958,913,868,814,741,710,671,621,589,542$: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 6 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (dd, $J=14.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.8,22.2,23.1,41.4$, $45.0,74.5,76.2,126.5,127.4,128.3,128.4,128.7,129.8,131.4,132.1,133.6,136.4,140.1,142.6 ;$ HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 437.1899$, found 437.1895.

4-((4-Methoxyphenyl)sulfonyl)-2-methyl-3,6-diphenyl-1,2,4-oxadiazinane (30). The general method described above was followed when aziridine $\mathbf{1 0}(28.9 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a (20.5 mg, 0.150 mmol) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 o}(33.1 \mathrm{mg}, 0.078 \mathrm{mmol})$ as a gummy liquid in 78% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3062,2925,1700,1596,1578,1496$, $1454,1413,1308,1260,1179,1155,1102,1090,1060,1026,987,956,865,743,698,675,612$, 562: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=12.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 41.1,45.4,55.6,72.6,76.0,114.3,126.5,128.1,128.4,128.5,128.6$, 129.4, 132.3, 134.4, 136.7, 137.8, 163.0; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 425.1535$, found 425.1537.

4-((4-(Tert-butyl)phenyl)sulfonyl)-2-methyl-3,6-diphenyl-1,2,4-oxadiazinane (3p). The general method described above was followed when aziridine $\mathbf{1 p}(31.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a (20.5 mg, 0.150 mmol) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 35 minutes to afford $\mathbf{3 p}$ ($32.4 \mathrm{mg}, 0.072 \mathrm{mmol}$) as a gummy liquid in 72% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3452,3062,3032,2963,2928,2869$, $1595,1494,1450,1397,1293,1267,1199,1164,1112,1100,1085,1061,1030,1014,1002,957$, $865,840,749,740,698,658,593,531:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $3.22(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, 14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.0,35.0,41.0,45.5,72.4,75.9$,
126.0, 126.6, 127.2, 128.1, 128.4, 128.5, 128.6, 129.9, 136.5, 137.5, 139.9, 156.6; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 451.2055$, found 451.2050.

2,3,6-triphenyl-4-tosyl-1,2,4-oxadiazinane (3pa). The general method described above was followed when aziridine $\mathbf{1 a}(27.3 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 1}(29.5 \mathrm{mg}, 0.150$ $\mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford 3pa ($41.36 \mathrm{mg}, 0.088 \mathrm{mmol}$) as a white solid in 88% yield: $R_{f} 0.7$ (10% ethyl acetate in petroleum ether), mp 162-164 ${ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3445,3062,3031,2957,2922,2852,1954,1732$, 1597, 1493, 1453, 1419, 1342, 1242, 1216, 1162, 1125, 1095, 1056, 1045, 957, 865, 840, 749, $738,695,658,594,538:{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, 14.2,11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{dd}, J=14.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.11$ $(\mathrm{m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 21.6, 45.6, 70.8, 74.9, 114.0, 121.3, 126.5, 127.5, 128.2, 128.3, 128.6, 128.7, 129.0, 129.5, 129.7, 136.0, 136.3, 136.9, 143.8, 146; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 471.1742, found 471.1745.

(3S,6S)-3-(4-Bromo-2-fluorophenyl)-2-methyl-6-phenyl-4-(phenylsulfonyl)-1,2,4-oxadiazinane

(3q). The general method described above was followed when (R) - $\mathbf{1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 b}(34.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($10 \mathrm{~mol} \%$) at $80^{\circ} \mathrm{C}$ for 45 minutes to afford $\mathbf{3 q}$ ($32.8 \mathrm{mg}, 0.067 \mathrm{mmol}$) as a thick liquid in 67% yield: $R_{f} 0.6\left(10 \%\right.$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3064,2924,2853,1601$, $1572,1481,1447,1406,1352,1310,1289,1260,1217,1162,1088,1070,990,910,870,817$, 753, 720, 689, 637, 546: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{dd}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 H), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13}{ }^{2} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.2,45.5,69.7,75.6,119.4,119.6,122.9,123.2,126.3,127.3$, $127.5,128.3,128.9,131.7,132.6,137.8,139.9,159.5,161.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrFN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 491.0440$, found 491.0442. $\left.[\alpha]\right]^{25}=+66.0\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$ for $\mathrm{a}>99 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis (chiralpak Cellulose 2 column), n-hexane $/$ i-propanol $=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=9.30 \mathrm{~min}($ minor $), \mathrm{tR}(2)$ $=11.20 \mathrm{~min}$ (major). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 c}(24.7 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ $(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 r}(41.2 \mathrm{mg}, 0.097 \mathrm{mmol})$ as a colourless solid in 97% yield: $R_{f} 0.6$ (10% ethyl acetate in petroleum ether); m.p $130-132{ }^{\circ} \mathrm{C}$; IR $\nu_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3064, 2961, 2925, 1610, 1585, 1511, 1446, 1344, 1252, 1163, 1103, 1088, 1031, 958, 914, 875, $782,715,690,548:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(\mathrm{dd}, J=14.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{dd}, J=10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{bd}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.1,45.4,55.3,73.0,75.8,113.4$, $113.9,126.5,127.2,128.5,128.6,129.0,129.8,132.6,137.8,140.7,159.6$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 425.1535$, found 425.1539. $[\alpha]_{\mathrm{D}}{ }^{25}=+115.2\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$ for a $>99 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n-hexane/i-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=14.70 \mathrm{~min}($ minor $), \mathrm{tR}(2)=25.41 \mathrm{~min}$ (major).

The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 d}(34.0 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ $(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 s}(32.9 \mathrm{mg}, 0.073 \mathrm{mmol})$ as a gummy liquid in 73% yield: $R_{f} 0.8\left(10 \%\right.$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,1446,1346,1164$, $1087,957,879,754,719,689,638,602,577,547:{ }^{1} \mathrm{H} \mathrm{MR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{~s}, 9 \mathrm{H}), 2.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=13.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.3,41.2,45.5,73.4,76.2,125.3,126.5,126.6,127.2,127.9$, 128.3, 128.5, 128.6, 128.9, 129.1, 132.5, 133.2, 140.6, 151.3 ; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+} 451.2055$, found 451.2063. $[\alpha]_{\mathrm{D}}^{25}=+54.0\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right)$ for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (chiral pak Cellulose 2 column), n-hexane/i-propanol $=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=8.56 \mathrm{~min}($ minor $), \mathrm{tR}(2)=10.73 \mathrm{~min}$ (major).

(3S,6S)-2-Methyl-6-phenyl-4-(phenylsulfonyl)-3-(4-(trifluoromethyl)phenyl)-1,2,4-

oxadiazinane (3t). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}$, $0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 e}(30.4 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and Bu4NBF4 $(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 t}(40.7 \mathrm{mg}, 0.088 \mathrm{mmol})$ as a gummy liquid in 88% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3065$, $2925,2854,1619,1586,1496,1447,1412,1326,1263,1166,1125,1110,1088,1018,990,962$, $925,832,804,755,719,690,673,639,580,550,539,:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.92(\mathrm{~s}$, $3 \mathrm{H}), 3.15(\mathrm{t}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.8$, $45.5,71.5,75.2,123.0,125.4,125.5,126.5,127.1,128.1,128.7,128.8,129.3,132.9,137.0,140.5$, 140.7; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 463.1303$, found 463.1302. . $[\alpha] \mathrm{D}^{25}=+79.2$ (c $0.30, \mathrm{CHCl}_{3}$) for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (chiralpak Cellulose 2 column), n-hexane $/ \mathrm{i}$-propanol $=80: 20$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}$ $(1)=7.43 \mathrm{~min}($ minor $), \mathrm{tR}(2)=8.67 \mathrm{~min}$ (major).
(3S,6S)-3-(furan-2-yl)-2-methyl-6-phenyl-4-(phenylsulfonyl)-1,2,4-oxadiazinane (3u). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}(20.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 u}$ ($39.5 \mathrm{mg}, 0.099 \mathrm{mmol}$) as a white solid in 99% yield: $R_{f} 0.7$ (10% ethyl acetate in petroleum ether); m.p $132-134^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,2962,2927$, $2889,1585,1496,1479,1447,1349,1310,1260,1226,1201,1165,1119,1087,1058,1003,995$, $955,930,913,883,816,754,719,698,689,601,578,545 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.66$ (s, 3H), $3.25(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=11.5,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.2$, 46.0, 70.6, 76.6, 110.1, 110.9, 126.3, 127.2, 128.6, 129.0, 132.4, 137.4, 139.6, 142.3, 148.1; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 385.1222$, found 385.1229. $[\alpha]_{\mathrm{D}}{ }^{25}=+136.00\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right)$ for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (chiralpak Cellulose 2 column), n -hexane $/ \mathrm{i}$-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=34.51 \mathrm{~min}$ (minor), $\mathrm{tR}(2)=57.70 \mathrm{~min}$ (major). general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 g}(27.7 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 45 minutes to afford $\mathbf{3 v}(31.1 \mathrm{mg}, 0.070 \mathrm{mmol})$ as a gummy liquid in 70% yield: R_{f} 0.7 (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3060,2956,2924,2854,1738$, $1601,1507,1496,1446,1345,1311,1265,1203,1119,1103,1087,1062,972,948,612,861$, 805, 784, 698, 636, 546, 522: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, 13.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.86(\mathrm{~m}$, $4 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.0,45.6,72.2,76.3,125.9,126.2,126.4$, 126.6, 127.2, 127.5, 127.9, 128.2, 128.3, 128.6, 129.1, 131.9, 132.7, 132.2, 134.0, 137.7; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 445.1586$, found 445.1580 . $[\alpha]_{\mathrm{D}}{ }^{25}=-35.00(\mathrm{c} 0.15, \mathrm{CHCl} 3)$ for a $>98 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n -hexane/i-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=13.63 \mathrm{~min}($ minor $), \mathrm{tR}(2)=$ 20.36 min (major).
(3S,6S)-3-(2,6-Dichlorophenyl)-2-methyl-6-phenyl-4-(phenylsulfonyl)-1,2,4-oxadiazinane (3w). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 h}(30.3 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ ($10 \mathrm{~mol} \%$) at $80^{\circ} \mathrm{C}$ for 45 minutes to afford $\mathbf{3 w}$ ($31.4 \mathrm{mg}, 0.068 \mathrm{mmol}$) as a gummy liquid in 68% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,2921,2852,1579$, $1563,1492,1438,1351,1289,1254,1206,1192,1133,1093,1059,1027,990,957,954,871$, 781, 713, 690, 576, 555: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.53(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{dd}$, $J=10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.43(\mathrm{t}, J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.8$, $46.1,79.2,79.6,125.8,127.3,128.2,128.6,128.9,129.6,130.1,132.4,132.7,136.5,140.0,141.3$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 463.0650$, found 463.0659. $[\alpha] \mathrm{D}^{25}=+82.5$ (c 0.16, CHCl_{3}) for a $>99 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis $($ OD-H column $)$, n-hexane/i-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=11.41 \mathrm{~min}$ (minor), $\mathrm{tR}(2)=13.90 \mathrm{~min}($ major $)$.

(3S,6S)-2-Benzyl-3-(furan-2-yl)-6-phenyl-4-(phenylsulfonyl)-1,2,4-oxadiazinane

(3x). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 i}(31.6 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 x}(44.2 \mathrm{mg}, 0.096 \mathrm{mmol})$ as a white solid in 96% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether), m.p 123-125 ${ }^{\circ} \mathrm{C}$; IR $\nu_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,3032,2923$, $1586,1496,1447,1350,1310,1263,1226,1201,1167,1101,1087,1071,1014,990,914,884$, 815, 792, 719, 698, 639, 599, 577: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.35(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.84-3.91 (m, 2H), $4.06(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=11.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 6.31$ $(\mathrm{s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 11 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 46.2,57.8,68.8,76.7,110.2,110.9$, $126.4,127.5,127.6,128.4,128.6,128.8,129.0,132.5,135.8,137.4,139.9,142.5,148.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 461.1535$, found 461.1534. $[\alpha]_{\mathrm{D}}{ }^{25}=+57.3\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right)$ for a $>99 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n -hexane $/ \mathrm{i}$-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=13.01 \mathrm{~min}($ minor $), \operatorname{tR}(2)=$ 13.71 min (major).

(3S,6S)-2-benzyl-6-phenyl-4-(phenylsulfonyl)-3-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazinane

(3y). The general method described above was followed when $(R) \mathbf{- 1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2} \mathbf{j}(41.8 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10$ $\mathrm{mol} \%$) at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 y}$ ($49.5 \mathrm{mg}, 0.092 \mathrm{mmol}$) as a gummy liquid in 92% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3065,3033,2924,2854$, $1619,1496,1447,1411,1325,1263,1165,1124,1068,1018,960,881,840,802,755,720,698$, 601: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.21(\mathrm{dd}, J=14.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=14.3,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=11.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (s, 1H), $7.11(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.5,57.1,72.4,72.5,125.4,125.5,126.5,127.2,127.8,128.5,128.7,128.8$, $128.9,129.2,129.3,130.2,133.0,135.7,136.9,140.5,140.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 539.1616$, found 539.1610. $[\alpha]_{\mathrm{D}}^{25}=+126.3\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$ for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n-hexane/i-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=10.08 \mathrm{~min}($ minor $), \mathrm{tR}(2)=11.26 \mathrm{~min}$ (major).
(3S,6S)-2-Benzyl-3,6-diphenyl-4-(phenylsulfonyl)-1,2,4-oxadiazinane (3z). The general method described above was followed when $(R)-\mathbf{1 m}(26.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 k}$ $(31.6 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80{ }^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{3 z}(40.5 \mathrm{mg}, 0.086 \mathrm{mmol})$ as a gummy liquid in 86% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,3061,2924,2855,1603,1494,1447,1347$, $1264,1165,1099,1070,1029,957,911,867,805,755,740,721,697,642,577:{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.29(\mathrm{dd}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=14.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=13.2$
$\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=3.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.8,45.5,71.5,75.2,123.0,125.4$, $125.5,126.5,127.1,128.1,128.7,128.8,129.3,132.9,137.0,140.5,140.7$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 471.1742$, found 471.1746. $[\alpha]_{\mathrm{D}}{ }^{25}=+41.00\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right)$ for a 99% ee sample. The enantiomeric excess was determined by chiral HPLC analysis (chiralpak Cellulose 2 column), n -hexane $/ \mathrm{i}$-propanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=14.47 \mathrm{~min}($ minor $), \mathrm{tR}(2)=$ 18.84 min (major).

2-Methyl-3-phenyl-4-tosyl-6-vinyl-1,2,4-oxadiazinane (5a). The general method described above was followed when aziridine $\mathbf{1 q}(22.3 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}(20.5 \mathrm{mg}$, $0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 30 minutes to afford $\mathbf{5 a}(29.4 \mathrm{mg}, 0.082 \mathrm{mmol})$ as a colourless liquid in 82% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,3030,2958,2956,2924,1917,1728,1645,1598$, $1493,1449,1406,1343,1306,1288,1261,1161,1103,1088,1066,985,890,740,699,614,585$, 522: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=13.7,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{dd}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-48(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60-5.67(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,41.2,43.7,70.6,76.1,119.2,126.6,127.2,128.2,128.4,129.7$, 133.8, 136.4, 137.4, 143; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 359.1429$, found 359.1423 .

2-Methyl-3,6-diphenyl-5-propyl-4-tosyl-1,2,4-oxadiazinane (6a). The general method described above was followed when aziridine $\mathbf{1 r}(31.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}$ (20.5 $\mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80{ }^{\circ} \mathrm{C}$ for 30
minutes to afford $\mathbf{6 a}(38.7 \mathrm{mg}, 0.086 \mathrm{mmol})$ as a white solid in 86% yield: $R_{f} 0.7(10 \%$ ethyl acetate in petroleum ether), m.p 117-119 ${ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3061,3029,2961,2929,2871$, $1598,1494,1450,1377,1349,1163,1122,1087,1058,1005,962,925,885,866,848,816,762$, $732,684,661,630,583,564,542,496:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.56-0.79(\mathrm{~m}, 3 \mathrm{H}), 0.98-1.06(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.91(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.3,18.9,21.5,29.6,44.4,57.1,73.7$, $74.4,125.6,127.5,127.6,127.8,128.0,128.3,128.8,129.7,138.1,138.2,138.8,143.7$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 451.2055$, found 451.2049.

6-(2,4-dichlorophenyl)-5-ethyl-2-methyl-3-phenyl-4-tosyl-1,2,4-oxadiazinane (6b). The general method described above was followed when aziridine $1 \mathrm{~s}(36.9 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a $(20.5 \mathrm{mg}, 0.150 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 120 minutes to afford $\mathbf{6 b}(36.2 \mathrm{mg}, 0.072 \mathrm{mmol})$ as a viscus liquid in 72% yield: $R_{f} 0.6$ (10 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3484,2955,2925,2854,1727,1640$, $1590,1561,1493,1465,1378,1350,1305,1284,1164,1123,1049,1020,999,971,912,864$, $814,771,744,724,679,667,581:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.27$ (bt, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.59 (bs, 1H), $1.10(\mathrm{bs}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 10.4,21.5,21.8,41.6,55.2,72.4,74.8,127.2$, $127.9,128.0,128.2,128.5,128.9,129.0,129.6,131.9,134.0,134.8,137.8,138.8,143.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 505.1119$, found 505.1119. method described above was followed when aziridine $1 \mathbf{t}(35.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ was reacted with nitrone 2a (20.5 mg, 0.150 mmol) in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 120 minutes to afford $\mathbf{6 c}(33.3 \mathrm{mg}, 0.068 \mathrm{mmol})$ as a white solid in 68% yield: $R_{f} 0.7$ (10 \% ethyl acetate in petroleum ether), m.p $147-149{ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3066,2929,2870$, $1917,1592,1560,1493,1447,1451,1447,1402,1382,1349,1330,1290,1234,1164,1120,1092$, $1053,995,886,814,772,742,675,600,580,546:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.47(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.37(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 7.16$ (dd, $J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.7,21.5,41.2,48.9,69.6,74.2,127.2,127.6,127.8,128.2$, $128.3,128.9,129.0,129.8,132.0,134.2,134.3,137.7,139.5,143.8$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 491.0963$, found 491.0963 .

2-Methyl-3,6-diphenyl-1,2,4-oxadiazinane (7a). To a Solution of oxadiazinane 3a (81.2 mg, 0.200 mmol) in anhydrous methanol was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (4 equiv) and $\mathrm{Na}-\mathrm{Hg}$ (2 equiv). The reaction mixture was stirred for 60 min at rt . The reaction mixture was then quenched with water, extracted with diethyl ether $(3 \times 10.0 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by flash column chromatography on silica gel (230-400 mesh) using ethyl acetate in petroleum ether as the eluent to afford NH -free $7 \mathrm{a}(37.08,0.146 \mathrm{mmol}$) as a clear liquid in 73% yield: $R_{f} 0.4$ (20 \% ethyl acetate in petroleum ether); IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3064,2961,2925,1610$, $1585,1511,1446,1344,1252,1163,1103,1088,1031,958,914,875,782,715,690,548:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.9,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,2.7$
$\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 42.8,51.2,81.2,83.9,126.6,127.4,128.2,128.6,128.8$, 128.9, 138.6, 139.5; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 255.1497$, found 255.1498.
(3R,6S)-2-Methyl-3,6-diphenyl-1,4,2-dioxazinane (9a). The general method described above was followed when (R) $\mathbf{- 4}(24.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 a}(40.5 \mathrm{mg}, 0.300 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 60 minutes to afford $9 \mathbf{a}$ $(48.5 \mathrm{mg}, 0.176 \mathrm{mmol})$ as colourless solid in 85% yield: $R_{f} 0.7(5 \%$ ethyl acetate in petroleum ether), m.p 90-92 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR} v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3031,2956,2911,2853,1956,1494,1451,1364,1310$, $1251,1196,1143,1091,1051,989,898,667:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (dd, $J=10.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.5,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 40.9,71.4,78.6$, 98.0, 126.9, 127.9, 128.6, 128.7, 128.8, 129.6, 136.6, 136.9; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}$278.1157, found 278.1153. $[\alpha]_{\mathrm{D}}{ }^{25}=+46.7\left(\mathrm{c} 0.13, \mathrm{CHCl}_{3}\right)$ for a $>98 \%$ ee sample. The enantiomeric excess was determined by chiral HPLC analysis (OD-H column), n-hexane/ipropanol $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{tR}(1)=5.88 \mathrm{~min}($ minor $), \mathrm{tR}(2)=6.82 \mathrm{~min}($ major $)$.

2-Methyl-6-phenyl-3-(4-(trifluoromethyl)phenyl)-1,4,2-dioxazinane (9b). The general method described above was followed when epoxide $4(24.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 e}(60.9 \mathrm{mg}, 0.300 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 60 minutes to afford $\mathbf{9 b}(46.6 \mathrm{mg}, 0.144 \mathrm{mmol})$ as a colourless solid in 72% yield: $R_{f} 0.6$ (5% ethyl acetate in petroleum ether); m.p $105-107^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,3031,2960,2928$, 1917, 1598, 1495, 1452, 1409, 1378, 1348, 1326, 1305, 1290, 1242, 1162, 1091, 1019, 998, 908, $838,763,730,699,674,630,552:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=10.8$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.33-7.40 (m, 5H), 7.62-7.68 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.5,71.3,78.3,96.9$, $125.6,125.7,126.8,128.4,128.7,128.8,131.6,131.8,136.4,140.7$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$324.1211, found 324.1208

3-(4-Methoxyphenyl)-2-methyl-6-phenyl-1,4,2-dioxazinane (9c). The general method described above was followed when epoxide $\mathbf{4}(24.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 c}(49.5 \mathrm{mg}$, $0.300 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 60 minutes to afford $9 \mathrm{c}(51.7 \mathrm{mg}, 0.168 \mathrm{mmol})$ as yellow solid in 84% yield: $R_{f} 0.5$ (5 \% ethyl acetate in petroleum ether); m.p $114-116^{\circ} \mathrm{C}$; $\mathrm{IR} v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2956,2924,2853,1742,1613,1586,1515$, $1496,1462,1377,1364,1251,1103,1036,994,964,898, \mathrm{M} 823,806,754,725,698,650,599:$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=11.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.10$ (dd, $J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.40(m, 5H), $7.43(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.9,55.4,71.4$, 78.7, 97.7, 114.1, 126.8, 128.5, 128.6, 129.2, 129.4, 136.7, 160.5; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 308.1263$, found 308.1265 .

3-(2,6-Dichlorophenyl)-2-methyl-6-phenyl-1,4,2-dioxazinane (9d). The general method described above was followed when epoxide $\mathbf{4}(24.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 h}$ (60.6 mg , $0.300 \mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 90 minutes to afford $9 \mathbf{d}(40.8 \mathrm{mg}, 0.126 \mathrm{mmol})$ as a white solid in 63% yield: $R_{f} 0.6$ (5 \% ethyl acetate in petroleum ether); m.p $122-124^{\circ} \mathrm{C}$; $\mathrm{IR} \nu_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3063,3032,2965,2880,2853,1698,1581$, $1563,1495,1453,1403,1368,1343,1328,1266,1186,1105,1052,996,965,899,757,698:{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.53(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=10.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.8,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 7 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 40.5,71.3,79.3,94.1,126.8,127.8,128.5,128.6,130.6,131.1$, 131.5, 136.4; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 324.0558$, found 324.0553

3-(Furan-2-yl)-2-methyl-6-phenyl-1,4,2-dioxazinane (9e). The general method described above was followed when epoxide $4(24.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ was reacted with nitrone $\mathbf{2 f}$ ($37.5 \mathrm{mg}, 0.300$ $\mathrm{mmol})$ in presence of $\mathrm{LiClO}_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(10 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C}$ for 60 minutes to afford $\mathbf{9 e}(44.4 \mathrm{mg}, 0.166 \mathrm{mmol})$ as a colourless solid in 83% yield: $R_{f} 0.7$ (5% ethyl acetate in petroleum ether); m.p 102-104 ${ }^{\circ} \mathrm{C}$; IR $v_{\max }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right), 3034,2954,2920,1910,1698,1595,1552,1456$, $1401,1388,1344,1321,1301,1278,1224,1182,1085,1011,999,930,838,762,735,699,675$, 630, 522: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=11.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}$, $J=11.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{bd}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 41.0,71.3,78.8,91.1,110.1,110.5,126.8,128.6,136.3,143.2,149.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{H})^{+} 268.0950$, found 268.0948

6. NMR Spectra

Figure 4: ${ }^{1} \mathrm{H}$ NMR spectrum 3a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $5:{ }^{13} \mathrm{C}$ NMR spectrum of 3a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$

Figure 6: 1 H NMR spectrum of 4 a at $55^{\circ} \mathrm{C}(\mathrm{CDCl} 3,500 \mathrm{MHz})$

Figure $7:{ }^{13} \mathrm{C}$ NMR spectrum of 4 a at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure 8: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 9: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure 10: ${ }^{1} \mathrm{H}$ NMR spectrum of 3 c at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $11:{ }^{13} \mathrm{C}$ NMR spectrum of 3 c at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure 12: ${ }^{1} \mathrm{H}$ NMR spectrum of 3 d at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $13:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $14:{ }^{1} \mathrm{H}$ NMR spectrum of 3 e at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $15:{ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{e}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $16:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $17:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $18:{ }^{1} \mathrm{H}$ NMR spectrum of 3 g at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 19: ${ }^{13} \mathrm{C}$ NMR spectrum of 3 g at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $20:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 21: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure 22: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$

Figure $23:{ }^{13} \mathrm{C}$ NMR spectrum of 3 i at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $24:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $25:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $26:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $27:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $28:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $29:{ }^{13} \mathrm{C}$ NMR spectrum of 31 at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $30 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $31:{ }^{13} \mathrm{C}$ NMR spectrum of 3 m at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $32 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 33 : ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $34 .{ }^{1} \mathrm{H}$ NMR spectrum of 30 at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $35:{ }^{13} \mathrm{C}$ NMR spectrum of 30 at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $36 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $37:{ }^{13} \mathrm{C}$ NMR spectrum of $3 p$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $38 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 pa at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $39:{ }^{13} \mathrm{C}$ NMR spectrum of 3 pa at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $40 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $41 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $42 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 r at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $43 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 r at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $44 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 s at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $45 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 s at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $46 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 t at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $47 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 t at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $49 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 u at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $50 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 v at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $51 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 v at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $52 .{ }^{1} \mathrm{H}$ NMR spectrum of 3 w at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $53 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 w at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $54 .{ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathbf{x}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $55 .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum of $\mathbf{3 x}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $56 .{ }^{1} \mathrm{H}$ NMR spectrum of $3 y$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $57 .{ }^{13} \mathrm{C}$ NMR spectrum of 3 y at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $58 .{ }^{1} \mathrm{H}$ NMR spectrum of $3 z$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $59 .{ }^{13} \mathrm{C} N M R$ spectrum of $3 z$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $60 .{ }^{1} \mathrm{H}$ NMR spectrum of 5 a at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $61 .{ }^{13} \mathrm{C}$ NMR spectrum of 5 a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $62 .{ }^{1} \mathrm{H}$ NMR spectrum of 6 a at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $63 .{ }^{13} \mathrm{C}$ NMR spectrum of 6 a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $64 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $65 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b}$ at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $66 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 c}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $67 .{ }^{13} \mathrm{C}$ NMR spectrum of 6 c at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $68 .{ }^{1} \mathrm{H}$ NMR spectrum of 7 a at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $69 .{ }^{13} \mathrm{C}$ NMR spectrum of 7 a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $70 .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum of 9 a at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $71 .{ }^{13} \mathrm{C}$ NMR spectrum of 9 a at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $72 .{ }^{1} \mathrm{H}$ NMR spectrum of 9 b at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure $73 .{ }^{13} \mathrm{C}$ NMR spectrum of 9 b at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $74 .{ }^{1} \mathrm{H}$ NMR spectrum of 9 c at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 75. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 c at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $76 .{ }^{1} \mathrm{H}$ NMR spectrum of 9 d at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 77. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 d at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

Figure $78 .{ }^{1} \mathrm{H}$ NMR spectrum of $9 \mathbf{e}$ at $55^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Figure 79. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 e at $55{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

7. HPLC chromatograms:

Figure 80. HPLC chromatogram of racemic compound $\mathbf{3 m}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$)

Figure 81. HPLC chromatogram of chiral compound $\mathbf{3 m}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee 99%)

Figure 82. HPLC chromatogram of racemic compound $\mathbf{3 q}$ (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \min ^{-1}$)

Figure 83. HPLC chromatogram of chiral compound $\mathbf{3 q}$ (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee $>99 \%$)

Figure 84. HPLC chromatogram of racemic compound $\mathbf{3 r}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$)

Figure 85. HPLC chromatogram of chiral compound $\mathbf{3 r}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee $>99 \%$)

Figure 86. HPLC chromatogram of racemic compound $\mathbf{3 s}$ (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 87. HPLC chromatogram of chiral compound 3s (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$) (ee 99%)

Figure 88. HPLC chromatogram of racemic compound 3t (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 89. HPLC chromatogram of chiral compound 3t (Cellulose 2 column; 80:20
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$) (ee 99\%)

Figure 90. HPLC chromatogram of racemic compound 3u (Cellulose 2 column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$)

Figure 91. HPLC chromatogram of chiral compound $\mathbf{3 u}$ (Cellulose 2 column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$) (ee 99\%)

Figure 92. HPLC chromatogram of racemic compound $\mathbf{3 v}$ (OD-H column; 95:5 Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 93. HPLC chromatogram of chiral compound $\mathbf{3 v}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee 98%)

Figure 94. HPLC chromatogram of racemic compound $\mathbf{3 w}$ (OD-H column; 95:5 Hexane-Isopropanol; $1 \mathrm{~mL} \min ^{-1}$)

Figure 95. HPLC chromatogram of chiral compound $\mathbf{3 w}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee >99\%)

Figure 96. HPLC chromatogram of racemic compound $\mathbf{3 x}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$)

Figure 97. HPLC chromatogram of chiral compound $\mathbf{3 x}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee $>99 \%$)

Figure 98. HPLC chromatogram of racemic compound 3y (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 99. HPLC chromatogram of chiral compound $\mathbf{3 y}$ (OD-H column; 95:5
Hexane-Isopropanol; 1 mL min) (ee 99%)

Figure 100. HPLC chromatogram of racemic compound $\mathbf{3 z}$ (Cellulose 2 column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 101. HPLC chromatogram of chiral compound $\mathbf{3 z}$ (Cellulose 2 column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee 99\%)

Figure 102. HPLC chromatogram of racemic compound 9a (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}^{-1}$)

Figure 103. HPLC chromatogram of chiral compound $\mathbf{9 a}$ (OD-H column; 95:5
Hexane-Isopropanol; $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) (ee 99)

