P-Stereogenic Bisphosphines with a Hydrazine Backbone. From $\mathbf{N}-\mathbf{N}$ Atropoisomerism to Double Nitrogen Inversion

Contribution by

Amparo Prades, Samuel Núñez-Pertíñez, Antoni Riera,* Xavier Verdaguer*

Table of contents:
General Methods 2
Synthesis of new compounds 2
Kinetic studies 11
Crystal data and structure refinement parameters 14
Hydrogenation substrates and products 18
${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra 20

General Methods. All reactions were carried out under nitrogen atmosphere in dried solvents. THF, $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried in a PureSolv purification system from Innovative Technology, Inc. Toluene and deuterated solvents were purchased from Aldrich and used without further purification. Thin layer chromatography was carried out using TLC-aluminum sheets with silica gel (Merk $60 \mathrm{~F}_{254}$). Chromatography purifications were carried out using flash grade silica gel (SDS Chromatogel $60 \mathrm{ACC}, 35-70 \mu \mathrm{~m}$). NMR spectra were recorded at $23^{\circ} \mathrm{C}$ on a Varian Mercury 400 and on a Varian Unity 300 spectrometres. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were referenced either to relative internal TMS or to residual solvent peaks. ${ }^{31} \mathrm{P}$ NMR spectra were referenced to phosphoric acid. Signal multiplicities in the ${ }^{13} \mathrm{C}$ spectra have been assigned by HSQC experiments. Optical rotations were recorded on a Perkin Elmer polarimeter at the sodium D line at room temperature (concentration in g / mL). Melting points were determined using a Büchi melting point apparatus and were not corrected. IR spectra were recorded in a FT-IR apparatus. HRMS were recorded using an electrospray ionization spectrometer. HPLC chromatography was performed on an Agilent Technologies Series 1100 chromatograph with UV detector. NaH as dispersion oil $(60 \% \mathrm{w} / \mathrm{w})$, DABCO, anhydrous triethylamine, pyrrolidine, methyl iodide, allyl bromide and 3-bromo-2-bromomethyl-1-propene were purchased from Aldrich and used without further purification. $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right]\left[\mathrm{BF}_{4}\right]$ and $\mathrm{NaBAr}_{4}{ }_{4}$ were purchased from STREM Chemicals and used without further purification. Phosphinous acid $\mathbf{1}^{1}$ and $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right]^{2}$ prepared following the literature procedure.

Synthesis of new compounds

(R)-tert-butyl-2-(tert-butyl(methyl)phosphino)hydrazinecarboxylate-borane (2).

To a Schlenk tube containing 365 mg of methanesulfonic anhydride ($2.10 \mathrm{mmol}, 1.2 \mathrm{eq}$), a solution of 233 mg of $\mathbf{1}(1.75 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dichloromethane $(10 \mathrm{~mL})$ was cannulated and the mixture was cooled at $-20^{\circ} \mathrm{C} .878 \mu \mathrm{~L}$ of triethylamine ($6.30 \mathrm{mmol}, 3.0 \mathrm{eq}$) were added dropwise over 10 minutes and the mixture was allowed to react for 1 hour at $-20^{\circ} \mathrm{C}$. Then, a dichloromethane solution of 833 mg of tert-butyl carbazate ($6.30 \mathrm{mmol}, 3.0 \mathrm{eq}$) was cannulated and the mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ overnight. After that time, the solution was allowed to warm at room
temperature, the organic phase was washed with $3 \times 20 \mathrm{~mL}$ of HCl (aq) 1.0 M solution and 20 mL of brine, dried over anhydrous MgSO_{4}, filtrated and the solvent was removed under reduced pressure. The resulting solid was dissolved in 10 mL of dichloromethane and washed with 4×10 mL of $\mathrm{NaOH}(\mathrm{aq}) 1.0 \mathrm{M}$ solution, dried over anhydrous MgSO_{4}, filtrated and the solvent was removed under reduced pressure. Finally the product was eluted through a SiO_{2} flash column with hexane:AcOEt (8:2) as eluting phase to yield 253 mg of a white solid. Yield: 58%.
TLC (hexane:AcOEt 8:2): $\mathrm{Rf}=0.50$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.10$ (brs, $1 \mathrm{H}, \mathrm{CO}-\mathrm{NH}$), 4.19 (brd, ${ }^{2} J_{\mathrm{PH}}=19.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PNH}$), 1.45 $\left(\mathrm{s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 1.45\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.41 \mathrm{ppm}\left(\mathrm{q},{ }^{1} J_{\mathrm{BH}}=84.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{BH}_{3}\right)$.
${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 81.5(\mathrm{~s}, \mathrm{CO}-\mathrm{NH}), 30.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=39.0 \mathrm{~Hz}\right.$, $\left.\mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.2\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}\right), 24.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.8 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $6.5 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=6.5 \mathrm{~Hz}\right.$, PCH_{3}).
${ }^{31} \mathbf{P}-\mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.2 \mathrm{ppm}$ (brs).
IR film, $\mathrm{cm}^{-1} \mathrm{v}$: 3000.4, 2971.9, 2388.5, 1708.7, 1513.1, 1160.9.
MS (ESI, high res., positive mode). Calcd. for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 266.2163$, found 266.2169 . Calcd. for $\left[2 \mathrm{M}+\mathrm{NH}_{4}\right]^{+} 514.3988$, found 514.4003 . Calcd. for $[2 \mathrm{M}+\mathrm{Na}]^{+} 519.3548$ found, 519.3558. Calcd. for $[2 \mathrm{M}+\mathrm{K}]^{+} 535.3287$ found 535.3301 .
$[\alpha]_{\mathrm{D}}=+19.0^{\circ}\left(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right)$.
$\mathbf{M P}\left({ }^{\circ} \mathrm{C}\right)=108-110$.

(R)-(tert-butyl(methyl)phosphanyl)hydrazine-borane (3)

In a Schlenk, 960 mg of $\mathbf{2}(3.87 \mathrm{mmol}, 1.0 \mathrm{eq})$ were dissolved in 19 mL of a 1.25 M anhydrous solution of HCl in methanol. The mixture was stirred overnight at room temperature and NaOH (aq) 1.0 M solution was added until $\mathrm{pH}=10$. The solvent was evaporated under reduced pressure and the aqueous phase was extracted $4 \times 12 \mathrm{~mL}$ of dichloromethane. The combined organic phase was washed with 20 mL of brine, dried over MgSO_{4}, filtrated and the solvent was removed under
reduced pressure to yield 520 mg of crude. The crude was eluted through a SiO_{2} flash column with hexane: $\operatorname{AcOEt}(8: 2)$ to yield 413 mg of a white pure product. Yield: 72%.

TLC (hexane:AcOEt 8:2): $\mathrm{Rf}=0.69$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.55\left(\mathrm{brd},{ }^{2} J_{\mathrm{PH}}=22.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PNH}\right), 3.37\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.40(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PH}}=8.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.17\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.38 \mathrm{ppm}\left(\mathrm{qd},{ }^{1} J_{\mathrm{BH}}=96.0\right.$ $\mathrm{Hz},{ }^{2} J_{\mathrm{PH}}=16.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{BH}_{3}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=39.0 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}\right.$, $\left.\mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $6.0 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=39.9 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$.
${ }^{31} \mathbf{P}-\mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 75.7 \mathrm{ppm}\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=66.7 \mathrm{~Hz}\right)$.
IR film, $\mathrm{cm}^{-1} \mathrm{v}: 3348$, 3209, 2968, 2867, 2380, 2341, 1069, 889.
MS (ESI, high res., positive mode). Calcd. for $[\mathrm{M}-\mathrm{H}]^{+}$147.1228, found 147.1219. Calcd. for $[2 \mathrm{M}+\mathrm{H}]^{+} 297.2674$, found 297.2680.
$[\alpha]_{\mathrm{D}}=+1.0^{\circ}\left(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right)$.
$\mathbf{M P}\left({ }^{\circ} \mathrm{C}\right)=129-130$.

1,2-bis((R)-tert-butyl(methyl)phosphanyl)hydrazine-bisborane (4)

Stepwise synthesis

In a Schlenk tube, 1.030 g of methanesulfonic anhydride ($5.92 \mathrm{mmol}, 1.2 \mathrm{eq}$) were dissolved in 15 mL of dichloromethane. A solution of 660 mg of $\mathbf{1}(4.93 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dichloromethane was cannulated over the methanesulfonic anhydride solution. The mixture was cooled at $-20^{\circ} \mathrm{C}$ and 2.06 mL of triethylamine ($14.79 \mathrm{mmol}, 3.0 \mathrm{eq}$) were added dropwise during 10 min . The mixture was allowed to react for 1 hour at $-20^{\circ} \mathrm{C}$, and then, a solution of 413 mg of $\mathbf{3}(2.79 \mathrm{mmol}, 0.57 \mathrm{eq})$ was cannulated. The mixture was stirred overnight at $-20^{\circ} \mathrm{C}$. The organic phase was washed with $3 \times 15 \mathrm{~mL}$ of $\mathrm{HCl}(\mathrm{aq}) 1.0 \mathrm{M}$ solution, 10 mL of $\mathrm{NaOH}(\mathrm{aq}) 1.0 \mathrm{M}$ solution and 15 mL of brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The resulting crude was purified by elution through a SiO_{2} flash column with DCM:TEA (97.5:2.5) to yield 410 mg of a crystalline colorless solid. Yield: 56\%.

One-Pot synthesis

In a Schlenk tube, 1.170 g of methanesulfonic anhydride $6.72 \mathrm{mmol}, 1.2 \mathrm{eq}$) were dissolved in 20 mL of dichloromethane. A solution of 750 mg of $\mathbf{1}(5.60 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dichloromethane was cannulated over the methanesulfonic anhydride solution. The mixture was cooled at $-20^{\circ} \mathrm{C}$ and 2.33 mL of triethylamine ($16.75 \mathrm{mmol}, 3.0 \mathrm{eq}$) were added dropwise during 10 min . The mixture was allowed to react for 1 hour at $-20^{\circ} \mathrm{C}$, and then, 2.25 mL of 1.0 M solution of hydrazine in THF (2.25 mmol .0 .4 eq) were added dropwise. The resulting mixture was stirred for 60 hours at -20 ${ }^{\circ} \mathrm{C}$. The organic phase was washed with $2 \times 25 \mathrm{~mL}$ of brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The resulting of crude were purified by elution through SiO_{2} flash column with hexane: $\operatorname{AcOEt}(95: 5)$ to $(80: 20)$ as eluting phase to yield 488 mg of pure crystalline colorless crystalline solid. Yield: 82%.

TLC (DCM:MeOH 95:5): $\mathrm{Rf}=0.49$
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.77\left(\mathrm{dbr},{ }^{2} J_{\mathrm{PH}}=18.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{NH}\right), 1.43\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.8 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.85-0.04 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH}_{3}\right)$.
${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=33.8 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4\left(\mathrm{~d},{ }^{2} J=2.8 \mathrm{~Hz}\right.$, $\left.\mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $6.6 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=39.0 \mathrm{~Hz}, \mathrm{PCH} 3\right)$.
${ }^{31} \mathbf{P}-\mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 81.7 \mathrm{ppm}\left(\mathrm{q},{ }^{1} J_{\mathrm{PB}}=92.9 \mathrm{~Hz}\right)$.
IR film, cm-1 v: 3302, 2959, 2377, 2343, 1462, 129, 1069.
MS (ESI, high res., positive mode). Calcd. for $[\mathrm{M}-\mathrm{H}]^{+}$263.2143, found 263.2148. Calcd. for $[2 \mathrm{M}+\mathrm{H}]^{+} 529.4526$, found 529.4539. Calcd. for $[\mathrm{M}-\mathrm{NH}]^{+} 282.2565$, found 282.2569 .
$[\alpha]_{\mathrm{D}}=-59.7^{\circ}\left(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right)$.
MP $\left({ }^{\circ} \mathrm{C}\right)=159-160$.

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1,2-dimethylhydrazinebisborane (5)

A solution of 75 mg of 1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-methylhydrazine-bisborane ($0.27 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 2 mL of THF was cannulated over a suspension of 44 mg of $60 \% \mathrm{NaH}$ ($1.08 \mathrm{mmol}, 4.0 \mathrm{eq}$) in THF. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 45 min . Then, $134 \mu \mathrm{~L}$ of MeI $(2.16 \mathrm{mmol}, 8.0 \mathrm{eq})$ were added and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 4 h . The reaction
was followed by silica TLC (hexane:AcOEt 8:2) until the monomethylated product disappeared. Finally, the mixture was allowed to cool at room temperature and 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added. The excess of hydride was destroyed by a very slow addition of 4 mL of water. The organic phase was washed with $2 \times 5 \mathrm{~mL}$ of brine, dried over anhydrous MgSO_{4}, filtered and the solvent was removed under reduced pressure to yield 75 mg of a pure colorless crystalline solid. During the TLC analysis two different spots were observed corresponding to two different atropoisomers undergoing rapid exchange. Yield: 95\%.
TLC (hexane:AcOEt 8:2): Rf=0.3 and 0.5
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Atropoisomer- $\left(R_{\mathrm{P}} R_{\mathrm{P}} S \mathrm{a}\right) \delta 2.93\left(\mathrm{dd},{ }^{3} J_{\mathrm{PH}}=4.0\right.$ and ${ }^{4} J_{\mathrm{PH}}=0.9 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.55\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.19\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.7 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.95-$ $0.25 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH}_{3}\right)$. Atropoisomer $-\left(R_{\mathrm{P}} R_{\mathrm{P}} R \mathrm{a}\right) \delta 2.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=5.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.41\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}\right.$ $\left.=7.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=14.2 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.95-0.25 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH}_{3}\right)$. ${ }^{13} \mathbf{C}-$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Atropoisomer- $\left(R_{\mathrm{P}} R_{\mathrm{P}} S \mathrm{a}\right) \delta 39.3\left(\mathrm{dd},{ }^{2} J_{\mathrm{PC}}=5\right.$ and ${ }^{3} J_{\mathrm{PC}}=1.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{3}\right), 33.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=33.3 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $7.7 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ $\left.=38.5 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$. Atropoisomer $-\left(R_{\mathrm{P}} R_{\mathrm{P}} R \mathrm{a}\right) \delta 37.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=1.9 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 33.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=37.3\right.$ $\left.\mathrm{Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.6 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $8.67 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=36.0 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$.
${ }^{31} \mathbf{P}-\mathbf{N M R}(202 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 94.2\left(\mathrm{q},{ }^{1} J_{\mathrm{PB}}=60.6 \mathrm{~Hz}\right)$ and $92.8 \mathrm{ppm}\left(\mathrm{q},{ }^{1} J_{\mathrm{PB}}=72.7 \mathrm{~Hz}\right)$.
IR film, cm-1v: 2958, 2870, 2390, 1294, 1072, 1054, 895.
MS (ESI, high res., positive mode). Calcd. for [M-H]+ 291.2456, found 291.2459.
Calcd. for $[\mathrm{M}+\mathrm{NH}]+310.2878$, found 310.2882 Calcd. for $[2 \mathrm{M}+\mathrm{NH}]+602.5418$, found 602.5423.
$[\alpha]_{\mathrm{D}}=+34.1^{\circ}(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl} 3)$.
$\mathbf{M P}\left({ }^{\circ} \mathrm{C}\right)=171-172$.

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-allylhydrazine-bisborane (6)

A solution of 70 mg of $\mathbf{5}(0.27 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 2 mL of THF was cannulated over a suspension of 44 mg of $60 \% \mathrm{NaH}(1.08 \mathrm{mmol}, 4.0 \mathrm{eq})$ in THF. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 30 min .
$70 \mu \mathrm{~L}$ of allyl bromide ($0.8 \mathrm{mmol}, 3.0 \mathrm{eq}$) were added and the mixture was stirred for 3 h . After that time, the reaction mixture was allowed to cool at room temperature and $5 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$ were added. The excess of hydride was destroyed by a slow addition of 4 mL of water. The organic phase was washed with $2 \times 5 \mathrm{~mL}$ of brine, dried over anhydrous MgSO_{4}, filtered and the solvent was removed under reduced pressure to yield 40 mg of pure white solid. Yield: 49%.
TLC (hexane:AcOEt 8:2): $\mathrm{Rf}=0.30$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.89\left(\mathrm{dddd},{ }^{2} J_{\mathrm{HH}}=17.2,10.3,7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 5.30(\mathrm{~m}$, , $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=16.5,6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=17.2,11.3,8.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.75\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 1.57\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=\right.$ $\left.8.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.8 \mathrm{~Hz}, 9 \mathrm{H}\right.$, $\left.\mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, and $0.95-0.25 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH} 3)$.
${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.9(\mathrm{~s}, \mathrm{CH}), 120.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=12.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $33.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=33.1 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=41.8 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.9 \mathrm{~Hz}\right.$, $\left.\mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.4 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=27.8 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$ and $8.6 \mathrm{ppm}(\mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}}=43.6 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$.

31P-NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 94.6\left(\mathrm{q},{ }^{1} J_{\mathrm{PB}}=131.6 \mathrm{~Hz}\right)$ and $81.1 \mathrm{ppm}\left(\mathrm{q},{ }^{1} J_{\mathrm{PB}}=122.7 \mathrm{~Hz}\right)$.
IR film, cm-1v: 3256, 2979, 2930, 2904, 2868, 2382, 2350, 1474, 1416, 1071, 884.
MS (ESI, high res., positive mode). Calcd. for $[\mathrm{M}+\mathrm{H}]+305.2500$, found 305.25011 .
$[\alpha]_{\mathrm{D}}=-33.5^{\circ}(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl} 3)$.
MP $\left({ }^{\circ} \mathrm{C}\right)=116-117$.

1,2-bis(tert-butyl(methyl)phosphanyl)-4-methylenepyrazolidine (7)

A solution of 100 mg of $\mathbf{4}(0.38 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 15 mL of THF was cannulated over a suspension of 91 mg of $60 \% \mathrm{NaH}(2.28 \mathrm{mmol}, 6.0 \mathrm{eq})$ in THF. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 1 h . Then, $130 \mu \mathrm{~L}$ ($1.14 \mathrm{mmol}, 3.0 \mathrm{eq}$) of 3-bromo-2-(bromomethyl)prop-1-ene were added and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 4 h . The reaction was followed by silica TLC (hexane:AcOEt 8:2) until the substrate disappeared. Finally, the mixture was allowed to cool at room temperature and 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added. The excess of hydride was destroyed by a very slow addition of 4 mL
of water. The organic phase was washed with $2 \times 5 \mathrm{~mL}$ of brine, dried over anhydrous MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude was crystallized in ether at $-25^{\circ} \mathrm{C}$ to yield 92 mg of a pure colorless crystalline solid $\left(8-R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right)$. During the TLC analysis two different spots were observed corresponding to two different N -inversion isomers undergoing rapid exchange. Yield: 77\%.
TLC (hexane:AcOEt 8:2): $\mathrm{Rf}=0.4$ and 0.6
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Isomer- $\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 5.14$ (quint., ${ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.96 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=7.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=13.8 \mathrm{~Hz}\right.$, $\left.18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.88-0.22 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH}_{3}\right)$. Isomer- $\left(R_{\mathrm{P}} S_{\mathrm{N}} S_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 5.12$ (quint. ${ }^{4} J_{\mathrm{HH}}=2.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.51\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=8.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right), 1.21$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PH}}=13.3 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.80-0.22 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{BH}_{3}\right)$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Isomer- $\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 147.9$ (s, CCH2), $105.3\left(\mathrm{~s}, \mathrm{CCH}_{2}\right)$, $56.2(\mathrm{~s}$, $\left.\mathrm{NCH}_{2}\right), 32.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=35.3 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.6\left(\mathrm{~s}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $8.5 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=33.6 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{3}\right)$. Isomer- $\left(R_{\mathrm{P}} S_{\mathrm{N}} S_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 147.8(\mathrm{~s}, \mathrm{CCH} 2), 104.8\left(\mathrm{~s}, \mathrm{CCH}_{2}\right), 56.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=6.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $32.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=30.1 \mathrm{~Hz}, \mathrm{P} C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.3 \mathrm{~Hz}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $8.3 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}=33.6\right.$ $\mathrm{Hz}, \mathrm{PCH}_{3}$).
${ }^{31} \mathbf{P}-\mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Isomer- $\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 95.4 \mathrm{ppm}\left(\mathrm{br} \mathrm{q},{ }^{1} J_{\mathrm{PB}}=83.8 \mathrm{~Hz}\right.$). Isomer$\left(R_{\mathrm{P}} S_{\mathrm{N}} S_{\mathrm{N}} R_{\mathrm{P}}\right) \delta 101.7 \mathrm{ppm}\left(\mathrm{br} \mathrm{q},{ }^{1} J_{\mathrm{PB}}=70.9 \mathrm{~Hz}\right)$.
IR film, cm-1v: 2950, 2927, 2870, 2378, 1470, 1394, 1293, 1069, 1054, 886.
MS ESI (high res., positive mode). Calcd. for [M-H]- 315.246, found 315.246. Calcd. for $[\mathrm{M}+\mathrm{Na}]+339.244$, found 339.244.
$[\alpha]_{\mathrm{D}}=+6.5^{\circ}\left(1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right)$.
MP $\left({ }^{\circ} \mathrm{C}\right)=186-187$.

1,2-bis((R)-tert-butyl(methyl)phosphino)hydrazine

In a Schlenk flask, 75 mg of $4(0.28 \mathrm{mmol}, 1.0 \mathrm{eq})$ were dissolved with 128 mg of DABCO (1.14 $\mathrm{mmol}, 4.0 \mathrm{eq}$) in 2 mL of toluene (or were dissolved in 2 mL of anhydrous pyrrolidine). The mixture was stirred for 6 h at $90^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the reaction crude was eluted with two eluting phases: hexane:AcOEt (75:25) and DCM:MeOH
(90:10) to yield 100 mg of a mixture $\mathrm{DABCO} \cdot \mathrm{BH}_{3}$ (or pyrrolidine $\cdot \mathrm{BH}_{3}$) and the product in a (1:1) molar proportion.

TLC (hexane:AcOEt 8:2) Rf ~ 0.05
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.50\left(\mathrm{dq},{ }^{1} J_{\mathrm{PH}}=445.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PH}\right), 1.40\left(\mathrm{dd},{ }^{2} J_{\mathrm{PH}}=12.8\right.$, $\left.3.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right)$ and $1.08 \mathrm{ppm}\left(\mathrm{d},{ }^{2} J_{\mathrm{PH}}=16.6 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.45 \mathrm{ppm}$.

General procedure to $\mathbf{R h (I)}$ complexes. In a Schlenk flask, 0.16 mmol of $\mathbf{5}$ or $\mathbf{7}$ were dissolved in 2 mL of anhydrous pyrrolidine and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . Pyrrolidine was evaporated under reduced pressure and 2 mL of dichloromethane were added. The deprotected diphosphine was cannulated over a solution of $167 \mathrm{mg}\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BArF}_{4}(0.15 \mathrm{mmol}, 0.95 \mathrm{eq}$.) in dichloromethane under N_{2} atmosphere at $-20^{\circ} \mathrm{C}$. The crude was eluted through SiO_{2} under nitrogen positive pressure with degassed solvent dcm:hexane (1:1). The solvent was removed under reduced pressure and the orange solid was washed with hexane.
$[\mathbf{R h}(5)(\mathbf{C O D})] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{8)}$
Yield: 82\%
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (br, $8 \mathrm{H}, \mathrm{CH}_{\mathrm{ArF}}$), 7.53 (br, 4H, $\mathrm{CH}_{\mathrm{ArF}}$), $5.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{COD}}\right)$, 5.07 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{COD}}$), $2.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 2.59-2.53 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}$), 2.43-2.33 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ COD $), 2.26-2.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}\right), 1.50\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right)$ and $1.12 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J_{\mathrm{PH}}=14.9\right.$ $\left.\mathrm{Hz}, 18 \mathrm{H}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=40 \mathrm{~Hz}, \mathrm{CB}_{\mathrm{BArF4}}\right), 134.7\left(\mathrm{~s}, \mathrm{CH}_{\mathrm{BArF4}}\right), 128.8(\mathrm{qq}$, $\left.{ }^{2} J_{\mathrm{FC}}=31.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{BC}}=2.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{BArF4}}\right), 124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}_{\mathrm{BAFF}}\right), 117.4\left(\mathrm{~m}, \mathrm{CH}_{\mathrm{BArF4}}\right), 103.2$ $\left(\mathrm{dt},{ }^{1} J_{\mathrm{RhC}}=7 \mathrm{~Hz},{ }^{2} J_{\mathrm{PC}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{COD}}\right), 96.0\left(\mathrm{~m}, \mathrm{CH}_{\mathrm{COD}}\right), 39.0\left(\mathrm{~m}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}, 37.1\left(\mathrm{~m}, \mathrm{NCH}_{3}\right)\right.$, $32.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{COD}\right), 27.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{COD}\right), 27.2\left(\mathrm{~m}, \mathrm{PC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $9.6 \mathrm{ppm}\left(\mathrm{m}, \mathrm{PCH}_{3}\right)$.
${ }^{31} \mathbf{P}-\mathbf{N M R}(202 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 136.0 \mathrm{ppm}\left(\mathrm{d},{ }^{1} J_{\mathrm{RhP}}=164 \mathrm{~Hz}\right)$
MS ESI (high res., positive mode). Calcd. for $\left[\mathrm{M}-\mathrm{BF}_{4}\right]+475.192$, found 475.193.

$[\mathbf{R h}(7)(\mathbf{C O D})] \mathrm{BAr}^{\mathrm{F}}$ (9)

Yield: 75\%
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71\left(\mathrm{br}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{ArF}}\right), \delta 7.53\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ArF}}\right), 5.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{COD}}\right)$, $5.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{COD}}\right), 3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.61-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}\right), 2.47-$
$2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}\right), 2.14-2.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{COD}}\right), 1.52\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{3}\right)$ and 1.20 ppm (d, $\left.{ }^{3} J_{\mathrm{PH}}=14.7 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=40 \mathrm{~Hz}, \mathrm{CB}_{\mathrm{BAFF}}\right.$), $134.7\left(\mathrm{~s}, \mathrm{CH}_{\mathrm{BArF4}}\right), 128.8$ (qq , $\left.{ }^{2} J_{\mathrm{FC}}=31.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{BC}}=2.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{BArF4}}\right), 124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{FC}}=272 \mathrm{~Hz}, \mathrm{CF}_{\mathrm{BArF} 4}\right), 119.4\left(\mathrm{~s}, C \mathrm{CH}_{2}\right), 116.4$ $\left(\mathrm{m}, \mathrm{CH}_{\mathrm{BAFF} 4}\right), 105.8\left(\mathrm{~s}, \mathrm{CCH}_{2}\right), 101.9\left(\mathrm{dt},{ }^{1} J_{\mathrm{RhC}}=6.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PC}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{COD}}\right), 93.3\left(\mathrm{~m}, \mathrm{CH}_{\mathrm{COD}}\right)$, $52.3\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 38.6\left(\mathrm{~m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 33.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{COD}\right), 27.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PC}}=2.7 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.5(\mathrm{~s}\right.$, $\left.\mathrm{CH}_{2} \mathrm{COD}\right)$, and $9.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{PC}}=23.7 \mathrm{~Hz}, \mathrm{PCH}_{3}\right)$.
${ }^{31} \mathbf{P}-\mathbf{N M R}(202 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 128.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{RhP}}=164 \mathrm{~Hz}\right)$
MS ESI (high res., positive mode). Calcd. for $\left[\mathrm{M}-\mathrm{Bar}^{\mathrm{F}} 4\right]+499.192$, found 499.190

Kinetic studies

15 mg of pure crystals of $\mathbf{5}$ and $\mathbf{7}$ were dissolved in deuterated chloroform in a NMR tube and successive ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were collected at controlled times.
Table 1. Kinetics data for the equilibrium 5- $\left(R_{\mathrm{P}} R_{\mathrm{P}} S_{\mathrm{a}}\right) / 5-\left(R_{\mathrm{P}} R_{\mathrm{P}} R_{\mathrm{a}}\right)$

Entry	time (min)	Molar fraction $\mathbf{5 -}\left(\boldsymbol{R}_{\mathbf{P}} \boldsymbol{R}_{\mathbf{P}} \boldsymbol{S}_{\mathbf{a}}\right)$	Molar Fraction $\mathbf{5 -}\left(\boldsymbol{R}_{\mathbf{P}} \boldsymbol{R}_{\mathbf{P}} \boldsymbol{R}_{\mathbf{a}}\right)$	ln ([Sa]-[Sa]eq)
$\mathbf{0}$	0	1	0	$-0,693147181$
$\mathbf{1}$	3	0,781	0,219	$-1,26940061$
$\mathbf{2}$	9	0,592	0,408	$-2,385966702$
$\mathbf{3}$	15	0,535	0,465	$-3,352407217$
$\mathbf{4}$	20	0,518	0,482	$-4,017383521$
$\mathbf{5}$	25	0,505	0,495	$-5,298317367$
$\mathbf{6}$	30	0,505	0,495	$-5,298317367$
$\mathbf{7}$	35	0,503	0,497	$-5,80914299$
$\mathbf{8}$	40	0,503	0,497	$-5,80914299$
$\mathbf{9}$	45	0,5	0,5	

Figure 1. Reaction profile for the equilibrium 5-($\left.R_{\mathrm{P}} R_{\mathrm{P}} S_{\mathrm{a}}\right) / 5-\left(R_{\mathrm{P}} R_{\mathrm{P}} R_{\mathrm{a}}\right)$ starting from 5- $\left(R_{\mathrm{P}} R_{\mathrm{P}} S_{\mathrm{a}}\right)$ in CDCl_{3}.

Figure 2. First order plot of $\operatorname{Ln}\left(\left[5-\left(R_{\mathrm{P}} R_{\mathrm{P}} S_{\mathrm{a}}\right)\right]-\left[5-\left(R_{\mathrm{P}} R_{\mathrm{P}} S_{\mathrm{a}}\right)\right]\right.$ eq) during time reaction (until concentration are equal).
$\mathrm{k}=1.47 \cdot 10^{-3} \mathrm{~s}^{-1}$
$\Delta \mathrm{G}^{\ddagger}=21 \mathrm{Kcal} \cdot \mathrm{mol}^{-1}=88 \mathrm{KJ} \cdot \mathrm{mol}^{-1}$

Table 2. Kinetics data for the equilibrium 7- $\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right) / 7-\left(R_{\mathrm{P}} S_{\mathrm{N}} S_{\mathrm{N}} R_{\mathrm{P}}\right)$

Entry	time (h)	Molar fraction $\mathbf{7 -}\left(\mathbf{R}_{\mathbf{P}} \boldsymbol{R}_{\mathbf{N}} \boldsymbol{R}_{\mathbf{N}} \boldsymbol{R}_{\mathbf{P}}\right)$	Molar Fraction $\mathbf{7 -}\left(\boldsymbol{R}_{\mathbf{P}} \boldsymbol{S}_{\mathbf{N}} \boldsymbol{S}_{\mathbf{N}} \boldsymbol{R}_{\mathbf{P}}\right)$	ln $\left(\left[\mathbf{R}_{\mathbf{N}} \mathbf{R}_{\mathbf{N}}\right]-\left[\mathbf{R}_{\mathbf{N}} \mathbf{R}_{\mathbf{N}}\right] \mathbf{e q}\right)$
$\mathbf{1}$	0	1	0	$-0,693147181$
$\mathbf{2}$	0,05	0,98	0,02	$-0,733969175$
$\mathbf{3}$	0,35	0,96	0,04	$-0,776528789$
$\mathbf{4}$	1,63	0,92	0,08	$-0,867500568$
$\mathbf{5}$	2,5	0,893	0,107	$-0,933945667$
$\mathbf{6}$	4,13	0,847	0,153	$-1,058430499$
$\mathbf{7}$	6,61	0,787	0,213	$-1,248273063$
$\mathbf{8}$	7,85	0,763	0,237	$-1,335601247$
$\mathbf{9}$	12	0,699	0,301	$-1,614450454$
$\mathbf{1 0}$	13,3	0,675	0,325	$-1,742969305$
$\mathbf{1 1}$	24	0,58	0,42	$-2,525728644$

Figure 3. Reaction profile for the equilibrium 7- $\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right) / \mathbf{8}-\left(R_{\mathrm{P}} S_{\mathrm{N}} S_{\mathrm{N}} R_{\mathrm{P}}\right)$ starting from 7($R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}$) in CDCl_{3}.

Figure 4. First order plot of $\operatorname{Ln}\left(\left[7-\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right)\right]-\left[7-\left(R_{\mathrm{P}} R_{\mathrm{N}} R_{\mathrm{N}} R_{\mathrm{P}}\right)\right]\right.$ eq) during time reaction (until concentration are equal).
$\mathrm{k}=1.045 \cdot 10^{-5} \mathrm{~s}^{-1}$
$\Delta \mathrm{G}^{\ddagger}=24 \mathrm{Kcal} \cdot \mathrm{mol}^{-1}=100.4 \mathrm{KJ} \cdot \mathrm{mol}^{-1}$

Crystal data and structure refinement parameters

Crystal data and structure refinement for 5.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

C12 H36 B2 N2 P2
291.99

100(2) K
$0.71073 \AA$
Monoclinic
P2(1)
$\mathrm{a}=6.7712(4) \AA \alpha=90^{\circ}$
$\mathrm{b}=21.3766(14) \AA \beta=114.0523(16)^{\circ}$
$\mathrm{c}=6.9819(4) \AA \quad \gamma=90^{\circ}$
Volume
922.85(10) \AA^{3}

2
$1.051 \mathrm{Mg} / \mathrm{m}^{3}$
$0.224 \mathrm{~mm}^{-1}$
324
$0.55 \times 0.30 \times 0.10 \mathrm{~mm}^{3}$
1.905 to 32.566°.
$-10<=\mathrm{h}<=7,-31<=\mathrm{k}<=31,-5<=1<=10$
10290
$5570[\mathrm{R}(\mathrm{int})=0.0257]$
90.4\%

Empirical
0.978 and 0.899

Full-matrix least-squares on F^{2}
5570/ 1/ 175
1.053
$\mathrm{R} 1=0.0353, \mathrm{wR} 2=0.0856$
$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0881$
$\mathrm{x}=-0.01(4)$
0.405 and -0.331 e. \AA^{-3}

Crystal data and structure refinement for 7.

Empirical formula	C14 H36 B2 N2 P2
Formula weight	316.01
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=10.4260(10) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=13.8793(12) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.409(2) \AA \quad \gamma=90^{\circ}$.
Volume	3966.2(6) \AA^{3}
Z	8
Density (calculated)	$1.058 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.213 \mathrm{~mm}^{-1}$
F(000)	1392
Crystal size	$0.25 \times 0.25 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	1.486 to 25.565°.
Index ranges	$-12<=\mathrm{h}<=12,-15<=\mathrm{k}<=16,-33<=\mathrm{l}<=24$
Reflections collected	25315
Independent reflections	$7282[\mathrm{R}(\mathrm{int})=0.0541]$
Completeness to theta $=25.565^{\circ}$	97.9\%
Absorption correction	Multi-scan
Max. and min. transmission	0.987 and 0.833
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7282/ 180/ 429
Goodness-of-fit on F2	0.810
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0376, \mathrm{wR} 2=0.1032$
R indices (all data)	$\mathrm{R} 1=0.0441, \mathrm{wR} 2=0.1112$
Flack parameter	$\mathrm{x}=0.06$ (4)
Largest diff. peak and hole	0.328 and -0.234 e. \AA^{-3}

Crystal data and structure refinement for 9 .

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

C54 H54 B F24 N2 P2 Rh
1362.65

100(2) K
$0.71073 \AA$
Monoclinic
P2(1)
$a=12.92590(14) \AA \quad \alpha=90^{\circ}$.
$b=12.42237(13) \AA \quad \beta=107.0548(12)^{\circ}$.
$\mathrm{c}=18.1785(2) \AA \quad \gamma=90^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=35.492^{\circ}$
Absorption correction
Max. and min. transmission
$2790.56(6) \AA^{3}$
2
$1.622 \mathrm{Mg} / \mathrm{m}^{3}$
$0.484 \mathrm{~mm}^{-1}$
1376
$0.15 \times 0.15 \times 0.1 \mathrm{~mm}^{3}$
2.015 to 35.492°.
$-21<=\mathrm{h}<=20,-20<=\mathrm{k}<=20,-28<=\mathrm{l}<=29$
84093
$23935[\mathrm{R}(\mathrm{int})=0.0177]$
96.100006\%

Multi-scan
0.953 and 0.733

Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Flack parameter
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
23935/85/ 819
1.052
$\mathrm{R} 1=0.0198, \mathrm{wR} 2=0.0529$
$\mathrm{R} 1=0.0204, \mathrm{wR} 2=0.0531$
$\mathrm{x}=-0.022(2)$
0.574 and -0.305 e. \AA-3

General Procedure for the Rh-Catalysed Asymmetric Hydrogenations

Substrates ($0.37,3.7$ or 18.5 mmol), and catalyst (0.0037 mmol) were weighed and placed into a pressure vessel. Anhydrous MeOH (1 or 2.5 mL) was added to the reaction mixture. The pressure vessel was pressure with 3 or 5 bar of H_{2}, the reaction mixtures were stirred overnight at room temperature. The autoclave was depressurized; the reaction mixture was filtered through a short pad of SiO_{2} and subsequently eluted with EtOAc. The resulting solution was concentrated under vacuum. The conversion was determined by ${ }^{1} \mathrm{H}$ NMR and the enantiomeric excess was determined by GC or HPLC analysis on chiral stationary phases.

Pressure vessels for hydrogenations: Ace® glass pressure tube with Teflon screw-cap equipped with pressure gauge and valve.

Hydrogenation substrates

Methyl 2-acetamidoacrylate and dimethyl itaconate were commercially available (SigmaAldrich®). (Z)-Methyl 2-acetamido-3-phenylacrylate, ${ }^{3}$ and N-(1-Phenylvinyl)acetamide ${ }^{4}$ were prepared according to the cited literature procedures.

Hydrogenation products:

(R)-Methyl 2-acetamidopropanoate (MAA): ${ }^{5}$ GC conditions: Supelco Beta DEXTм 120 (30 m x $0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), isothermal $90^{\circ} \mathrm{C}, 15 \mathrm{psi} \mathrm{He}, t_{R}(S)=63.4 \mathrm{~min}, t_{R}(R)=65.2 \mathrm{~min}$ (major peak).

(R)-Methyl 2-acetamido-3-phenylpropanoate (Z-MAC): ${ }^{5}$ HPLC conditions: Chiralpak® ADH $(250 \mathrm{x} 4.6 \mathrm{~mm}), 5 \mu\left(\right.$ COL-HP-51), $90: 10 n$-heptane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{R}(R)=10.0$ $\min \left(\right.$ major peak) and $t_{R}(S)=13.8 \mathrm{~min}$.

(R)-Methyl 2-acetamido-3-(3,4,5-trimethylphenyl)propanoate: ${ }^{4}$ HPLC conditions: Chiralpak® IA ($250 \times 4.6 \mathrm{~mm}$), 5μ (COL-HP-90) 95:5 heptane/2-propanol, $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \operatorname{tR}(R)=15.9 \mathrm{~min}$ (major peak), $\operatorname{tr}(S)=20.4 \mathrm{~min}$

(R)- N-(1-Phenylethyl)acetamide (PVA): ${ }^{6}$ Chiralpak® ADH ($250 \times 4.6 \mathrm{~mm}$), 5μ (COL-HP-51), 95:5 n-heptane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}, 216 \mathrm{~nm}, t_{R}(R)=11.9 \mathrm{~min}$ (major peak), $t_{R}(S)=15.4 \mathrm{~min}$.

(S)-Dimethyl 2-methylsuccinate (DMI): ${ }^{7}$ GC conditions: Chiraldex B-DM (30 m x 0.25 mm), isothermal $80^{\circ} \mathrm{C}, 15 \mathrm{psi} \mathrm{He}, t_{R}(S)=22.5 \mathrm{~min}$ (major peak), $t_{R}(R)=22.7 \mathrm{~min}$.

1 S. Orgué, A. Flores, M. Biosca, O. Pamies, M. Diéguez, A. Riera and X. Verdaguer, Chem. Соттип., 2015, 51, 17548-17551.
2 B. Guzel, M. A. Omary, J. P. Fackler Jr. and A. Akgerman, Inorganica Chim. Acta, 2001, 325, 4550.

3 J. Lee, S. Bernard and X.-C. Liu, React. Funct. Polym., 2009, 69, 650-654.
4 M. J. Burk, G. Casy and N. B. Johnson, J. Org. Chem., 1998, 63, 6084-6085.
5 M. J. Burk, J. E. Feaster, W. A. Nugent and R. L. Harlow, J. Am. Chem. Soc., 1993, 115, 1012510138.

6 C. Pautigny, S. Jeulin, T. Ayad, Z. Zhang, J.-P. Genêt and V. Ratovelomanana-Vidal, Adv. Synth. Catal., 2008, 350, 2525-2532.
7 L. Yu, Z. Wang, J. Wu, S. Tu and K. Ding, Angew. Chemie Int. Ed., 2010, 49, 3627-3630.
 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2}$

(R)-(tert-butyl(methyl)phosphanyl)hydrazine-borane
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

1,2-bis((R)-tert-butyl(methyl)phosphanyl)hydrazine-bisborane

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\underset{\substack{\mathrm{a}}}{\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of } 4}\right.$

31P NMR

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1,2-dimethylhydrazinebisborane
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5

 $\xrightarrow{+474}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-allylhydrazine-bisborane
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}\right.$, CDCl_{3}) of 6

1,2-bis(tert-butyl(methyl)phosphanyl)-4-methylenepyrazolidine
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7

1,2-bis((R)-tert-butyl(methyl)phosphino)hydrazine + DABCO-BH3
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[$\mathbf{R h (5) (C O D)} \mathbf{(B A r}{ }^{\mathbf{F}}{ }_{4}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$

[$\mathbf{R h}(7)(\mathbf{C O D})] \mathbf{B A r}^{\mathbf{F}}{ }_{4}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9

