Electronic Supplementary Information for Goeltz, J. C. and Matsushima, L. N. **Metal Free Redox Active Deep Eutectic Solvents**

General

Solids were dried in a vacuum oven at 35 °C to a constant mass and stored in a desiccator. All other chemicals were used as received. Methyl viologen (98%) was obtained from Sigma Aldrich, Milwaukee, WI. Benzyl viologen (98%) was obtained from TCI, Portland, OR. Ethylene glycol (99%) was obtained from Alfa Aesar, Tewksbury, MA. Malonic acid (99%) was obtained from Sigma Aldrich. Choline chloride (high purity) was obtained from VWR, Radnor, PA. Generally, materials were mixed in the appropriate molar ratios and gently warmed on a sand bath until uniform mixtures were obtained. Melting points were determined with an Electrothermal melting point apparatus by manually increasing the set point to achieve a rate of increase of < 1 °C/min.

Spectroelectrochemistry

Spectroelectrochemistry was performed using a Perkin Elmer 13 UV-Vis/NIR with a cell holder thermostatted via water recirculating bath and a Pt mesh working electrode from BAS Inc., a Pt counter electrode, and a leak free Ag/AgCl reference electrode. Data, as presented in the manuscript, are show again here to facilitate discussion and are plotted again below in cm⁻¹ for readers who prefer to think in terms of energy.

The dimerisation constant K_d for 1 mM benzyl viologen in a 2:1 eutectic of EG/ChCl is estimated by comparing the absorbances at 604 nm and the relative concentrations for the 1 mM solution versus the 66.4 μ M solution in water (blue line, above). For aqueous solutions, a $K_d = [mono]^2/[dim] = 20 \ \mu$ M is reported.¹ The material in the deep eutectic is 15 times more concentrated (increases relative K_d , as formulated), and the absorbance at 604 nm is 1.4 times as large (also increases relative K_d , as formulated). 20 μ M *15 * 1.4 = 420 μ M, or 400 μ M using one significant figure as is likely warranted here.

Electrochemistry and Digital Simulation

Voltammetry data were obtained with a 10 μ m diameter Pt or a 2 mm diameter glassy carbon working electrode (CH Instruments), a Pt coil counter electrode (Alfa Aesar), a leak free Ag/AgCl reference electrode (Harvard Apparatus), and a CH Instruments 660e potentiostat.

Voltammetry for 1 mM benzyl viologen in 2:1 ethylene glycol choline chloride with a 2 mm diameter glassy carbon electrode, ferrocene as an internal standard and a scan rate of 100 mV/s are overlaid with voltammetry of the "blank" 2:1 EG/ChCl solvent.

Voltammetry of 4:1 EG/BVCl₂ (4.2 M in BV^{2+}) at 40 °C with a 10 µm diameter Pt working electrode and varied scan rate is shown below.

The electrode area was confirmed by analysis of peak currents obtained for a solution of ferrocyanide of known concentration and the Randles Sevcik equation before fitting. The same equation was then used with the peak currents to estimate the diffusion coefficients for BV^{2+} and BV^{1+} as 3.4×10^{-9} cm²/s and 1.7×10^{-9} cm²/s, respectively. These were used as starting points for the digital simulation, *vide supra*.

EGBVCl ₂	Randles	Sevcik	Analysis				
scan rate	i _p red	D ₀ /	i _p ox	$\mathbf{D}_{\mathbf{R}}$ /	4.16 M		
V/s		cm ² /s		cm ² /s			
0.1	1.24E-08	2.36E-09	7.89E-09	9.64E-10			units
0.25	2.39E-08	3.53E-09	1.78E-08	1.97E-09	n	1	e
0.5	3.43E-08	3.64E-09	2.48E-08	1.91E-09	F	96485	C/mol e
0.75	4.23E-08	3.69E-09	2.99E-08	1.84E-09	А	7.36E-	cm ²
						07	
1	4.86E-08	3.66E-09	3.49E-08	1.89E-09	R	8.314	J/molK
		BV ²⁺		BV ¹⁺	Т	313	K
	avg	3.38E-09		1.71E-09	С	0.00416	mol/cm ³
	std dev	5.69E-10		4.23E-10			

Voltammetry results were simulated using DigiElch 8.0 from Gamry Instruments. A plot of the experimental data with simulated data including adsorption and dimerization (blue curve, well fit) and simulated data for just adsorption (gold, dashed line, less well fit).

DigiElch Parameters with dimerisation (blue, solid line above)

Charge Transfer Reactions $BV2++e=BV1+^{\ast}$, Eo* (V) = -0.5663 , alfa* = 0.5 , ks* (1/s) = 1.5

Chemical Reactions BV1+ + BV1+ = 2BV1+, Keq = 0.51917, kf = 18.758, kb = 36.131 *Note:* K_{eq} for dimerisation here equals 0.5, but this fitting uses the inverse formalism (i.e., reactants over products) compared with that used in the literature: $K_d = [mono]^2/[dim]$. To make them conform, we take the inverse of this value and arrive at 2 M.

Adsorption Reactions BV2+ = BV2+*, $Keq^* = 10000$, $kf^* = 10000$, $a^* = 0$ BV1+ = BV1+*, $Keq^* = 20000$, $kf^* = 10000$, $a^* = 0$ $\Gamma_{max} = 2.7E-8$

DigiElch Parameters without dimerisation (gold, dashed line above)

Charge Transfer Reactions BV2++e=BV1+*, Eo* (V) = -0.5663 , alfa* = 0.5 , ks* (1/s) = 1.5

Adsorption Reactions BV2+ = BV2+* , Keq* = 10000 , kf* = 10000 , a* = 0 BV1+ = BV1+* , Keq* = 20000 , kf* = 10000 , a* = 0 $\Gamma_{max} = 2.7E-8$