Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Rh^{III}-catalyzed site-selective C–H amidation with nitrone as a traceless directing group: an approach to functionalized arylaldehydes

Hong Deng,^a Hongji Li,*,^a Wenge Zhang,^a and Lei Wang*,^{a,b}

^aDepartment of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China, Tel: +86-561-3802-069 Fax: +86-561-3090-518

E-mail: hongjili@chun.edu.cn; leiwang@chun.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China

Table of Contents for Supporting Information

1. General considerations	1
2. Typical procedure for the reaction of 1a with 2a	1
3. Optimization of the solvent on the model reaction	2
4. Kinetic isotope effect experiments	2
5. X-ray single crystal structure of 3e	4
6. Typical transformation of 3a and 3b	4
7. Characterization data for the products	6
8. References	18
9. ¹ H and ¹³ C NMR spectra of the products	20

1. General considerations

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz and 100 MHz, respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI).

Arylnitrones were prepared according to reported methods,¹ and they must be recrystallized from ethanol/petroleum ether before use. Dioxazolones were prepared according to reported methods.² All chemicals were purchased from commercial suppliers, Aldrich of USA, or Shanghai Chemical Company of China. All the solvents were dried and freshly distilled in N₂ prior to use. Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂.

2. Typical procedure for the reaction of 1a with 2a

A 10 mL Schlenk tube was charged with (Z)-*N*-benzylideneaniline oxide (**1a**, 39.4 mg, 0.20 mmol), 3-phenyl-1,4,2-dioxazol-5-one (**2a**, 40.8 mg, 0.25 mmol), [Cp*RhCl₂]₂ (3.7 mg, 3 mol %), AgSbF₆ (6.9 mg, 0.02 mmol), NaOAc (4.9 mg, 0.06 mmol), HOAc (12.0 mg, 0.20 mmol). Then freshly distilled 1,2-dichloroethane (DCE, 1.0 mL) was injected into the Schlenk tube under air atmosphere. The reaction tube was placed in an oil bath. After the reaction was carried out at 100 °C for 20 h, the sealed tube was cooled to room temperature, detected by TLC, and extracted with dichloromethane (DCM, 3×5.0 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure to yield the crude product, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1 to 20:1), affording the desired product **3a** as a white solid (36.0 mg, 80% yield).

3. Optimization of the solvent on the model reaction

N ⁺ 0 ⁻ 1a	+ 0 0 [Cp*RhCl ₂] ₂ (3 mol %) AgSbF ₆ (10 mol %) NaOAc (30 mol %) HOAc (1.0 equiv) solvent, 100 °C, 20 h	
entry	solvent	yield (%) ^b
1	DCE	80
2	MeOH	n.r.
3	CH ₃ CN	7
4	THF	10
5	dioxane	trace
6	toluene	43
7	CHCl ₃	65

^{*a*}Reaction conditions: (Z)-*N*-benzylideneaniline oxide (**1a**, 0.20 mmol), 3-phenyl-1,4,2-dioxazol-5one (**2a**, 0.25 mmol), [Cp*RhCl₂]₂ (3 mol %), AgSbF₆ (10 mol %), NaOAc (30 mol %), HOAc (1.0 equiv), solvent (1.0 mL), 100 °C for 20 h. ^{*b*}Isolated yield.

4. Kinetic isotope effect (KIE) experiments

A 10 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol), $[D_6]$ -**1a** (0.10 mmol), 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (**2b**, 0.25 mmol), $[Cp*RhCl_2]_2$ (3.7 mg, 3 mol %), AgSbF₆ (6.9 mg, 10 mol %), NaOAc (4.9 mg, 0.06 mmol), HOAc (12.0 mg, 0.20 mmol), and DCE (1.0 mL). The reaction vessel was placed in an oil bath. After the reaction was carried out at 100 °C for 20 h, it was cooled to room temperature, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1 to 20:1) to give the desired product **3b**/ $[D_5]$ -**3b**. The KIE value was determined by ¹H NMR of **3b** and $[D_5]$ -**3b**.

Scheme S1 Kinetic Isotope Effect (KIE) Experiments

5. X-ray single crystal structure of 3e (CCDC Number: 1553921)

6. Design for the transformation of 3a/3b

(1) A 10 mL Schlenk tube was charged with **3a** (45.0 mg, 0.2 mmol), K_2CO_3 (1.6 equiv), MePh₃P⁺Br⁻ (1.2 equiv). Then dioxane (1.0 mL) was injected into the Schlenk tube under air atmosphere. The reaction mixture was refluxed for 16h, it was cooled to room temperature, detected by TLC, and extracted with dichloromethane (DCM, 3×5.0 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure to yield the crude product, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 15:1 to 9:1), affording the desired product **5** as a white solid (41.4 mg, 93% yield).

(2) A 10 mL Schlenk tube was charged with **5** (44.6 mg, 0.2 mmol), KOH (20 equiv). Then EtOH (1.0 mL) was injected into the Schlenk tube under air atmosphere. The reaction tube was placed in an oil bath. After the reaction was carried out at 100 °C for 20 h, it was cooled to room temperature and detected by TLC, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 15:1 to 7:1), affording the desired product **6** as a brown oil (20.2 mg, 85% yield).

(3) A 10 mL Schlenk tube was charged with **3b** (47.8 mg, 0.2 mmol), NaOH (10 equiv). Then MeOH (1.0 mL) was injected into the Schlenk tube under air atmosphere. The reaction mixture was refluxed for 10 h, it was cooled to room temperature and detected by TLC, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 15:1 to 7:1), affording the desired product **7** as a white solid (21.6 mg, 89% yield).

(4) A 10 mL Schlenk tube was charged with **3b** (47.8 mg, 0.2 mmol), CoCl₂ (10 mol %), TBHP (5.0 equiv). Then anhydrous MeCN (1.0 mL) was injected into the Schlenk tube under air atmosphere. The reaction tube was placed in an oil bath. After the reaction was carried out at 80 °C for 7h, it was cooled to room temperature, detected by TLC. The solvent was evaporated under reduced pressure. The residue was mixed with water (20 mL), and the resulting solution was extracted with ethyl acetate (3×5 mL). The combined organic phases were washed with brine and dried with anhydrous MgSO₄, and concentrated under reduced pressure to yield the crude product, which was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 20:1 to 9:1), affording the desired product **8** as a white solid (37.0 mg, 78% yield).

7. Characterization data for the products

N-(2-Formylphenyl)benzamide (3a): White solid; 36.0 mg, 80% yield; m.p. 69–71 °C; ¹H NMR (400 MHz, CDCl₃) δ: 12.09 (s, 1H), 10.00 (s, 1H), 8.97 (d, *J* = 8.4 Hz, 1H), 8.09–8.07 (m, 2H), 7.75–7.73 (m, 1H), 7.71–7.66 (m, 1H), 7.59–7.52 (m, 3H), 7.30–7.26 (m, 1H) ; ¹³C NMR (100 MHz, CDCl₃) δ: 195.84, 166.10, 141.23 136.34, 136.15, 134.31, 132.18, 128.85, 127.49, 123.01, 121.99, 119.96. The NMR data agree with those in a literature report.⁴

N-(2-Formylphenyl)-4-methylbenzamide (3b): White solid; 34.4 mg, 72% yield; m.p. 83–85 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.03 (s, 1H), 9.97 (s, 1H), 9.94 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.71–7.68 (m, 1H), 7.67–7.63 (m, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.25–7.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.76, 166.06, 142.73, 141.32, 136.25, 136.09, 131.48, 129.48, 127.47, 122.80, 121.89, 119.87, 21.44. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₄NO₂]⁺: 240.1019, Found: 240.1021. The NMR data agree with those in a literature report.⁵

4-Ethoxy-N-(2-formylphenyl)benzamide (3c): White solid; 35.0 mg, 65% yield; m.p. 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.02 (s, 1H), 10.01 (s, 1H), 8.96 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.8 Hz, 2H), 7.74–7.72 (m, 1H), 7.70–7.66 (m, 1H), 7.27–7.24 (m, 1H), 7.01 (d, J = 8.8 Hz, 2H), 4.13 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.86, 165.78, 162.27, 141.64, 136.37, 136.15, 129.48, 126.46, 122.71, 121.92, 119.93, 114.57, 63.75, 14.69. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₆H₁₆NO₃]⁺: 270.1125, Found: 270.1129.

4-Fluoro-*N*-(**2**-formylphenyl)benzamide (**3d**): White solid; 34.4 mg, 71% yield; m.p. 90–92 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.06 (s, 1H), 10.00 (s, 1H), 8.93 (d, *J* = 8.5 Hz, 1H), 8.11–8.07 (m, 2H), 7.75–7.73 (m, 1H), 7.71–7.66 (m, 1H), 7.30–7.28 (m, 1H), 7.23–7.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.97, 165.16 (d, *J* = 251.7 Hz), 164.95, 141.12, 136.30 (d, *J* = 23.0 Hz), 130.45 (d, *J* = 2.9 Hz), 129.97, 129.87, 123.12, 121.91, 119.87, 115.92 (d, *J* = 21.9 Hz). HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁FNO₂]⁺: 244.0768, Found: 244.0771. The NMR data agree with those in a literature report.⁵

4-Chloro-*N***-(2-formylphenyl)benzamide (3e):** White solid; 39.9 mg, 77% yield; m.p. 76–78 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.08 (s, 1H), 9.99 (s, 1H), 8.92 (d, *J* = 8.4 Hz, 1H), 8.02–8.00 (m, 2H), 7.75–7.72 (m, 1H), 7.70–7.66 (m, 1H), 7.52–7.49 (m, 2H), 7.30–7.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.94, 164.98, 141.03, 138.56, 136.41, 136.16, 132.68, 129.12, 128.90, 123.22, 121.97, 119.94. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁ClNO₂]⁺: 260.0473, Found: 260.0475. The NMR data agree with those in a literature report.⁵

4-Bromo-*N***-(2-formylphenyl)benzamide (3f):** White solid; 44.1 mg, 73% yield; m.p. 110–112 °C; ¹HNMR (400 MHz, CDCl₃) δ : 12.10 (s, 1H), 10.01 (s, 1H), 8.94 (d, *J* = 8.4 Hz, 1H), 7.96–7.94 (m, 2H), 7.77–7.74 (m, 1H), 7.72–7.68 (m, 3H), 7.32–7.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.94, 165.05, 140.98, 136.41, 136.17, 133.10, 132.09, 129.04, 127.10, 123.23, 121.93, 119.90. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁BrNO₂]⁺: 303.9968, Found: 303.9969. The NMR data agree with those in a literature report.⁶

N-(2-Formylphenyl)-4-iodobenzamide (3g): White solid; 43.5 mg, 62% yield; m.p. 124–126 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.07 (s, 1H), 9.99 (s, 1H), 8.92 (d, *J* = 8.5 Hz, 1H), 7.90–7.88 (m, 2H), 7.79–7.77 (m, 2H), 7.74–7.72 (m, 1H), 7.70–7.66 (m, 1H), 7.30–7.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.91, 165.32, 141.05, 138.14, 136.41, 136.17, 133.80, 129.02, 123.26, 122.04, 120.01, 99.54. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁INO₂]⁺: 351.9829, Found:351.9833.

N-(2-Formylphenyl)-3,5-dimethylbenzamide (3h): White solid; 31.9 mg, 63% yield; m.p. 107–109 °C; ¹H NMR (400 MHz, CDCl₃) δ: 12.01 (s, 1H), 10.00 (s, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 7.73–7.71 (m, 1H), 7.70–7.65 (m, 3H), 7.28–7.24 (m, 1H), 7.21 (s, 1H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 195.71, 166.63, 141.36, 138.53, 136.32, 136.11, 134.41, 133.85, 125.30, 122.88, 122.01, 120.02, 21.33. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₆H₁₆NO₂]⁺: 254.1176, Found: 254.1177.

N-(2-Formylphenyl)-3-(trifluoromethyl)benzamide (3i): White solid; 42.8 mg, 73% yield; m.p. 84–86 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.21 (s, 1H), 10.01 (s, 1H), 8.93 (d, J = 8.4 Hz, 1H), 8.37 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.76 (dd, $J_I = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.73–7.67 (m, 2H), 7.33–7.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.03, 164.55, 140.85, 136.49, 136.20, 135.19, 131.55 (q, J = 32.9 Hz), 130.25, 129.50, 128.71 (q, J = 3.5 Hz), 124.97 (q, J = 4.2 Hz), 123.50, 122.07, 120.02. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₁F₃NO₂]⁺: 294.0736, Found: 294.0737.

N-(2-Formylphenyl)thiophene-2-carboxamide (3j): White solid; 31.0 mg, 67% yield; m.p. 110–112 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.06 (s, 1H), 10.00 (s, 1H), 8.86 (d, *J* = 8.4 Hz, 1H), 7.86–7.85 (m, 1H), 7.74–7.72 (m, 1H), 7.70–7.65 (m, 1H), 7.62–7.60 (m, 1H), 7.29–7.25 (m, 1H), 7.20–7.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.86, 160.79, 141.10, 139.84, 136.39, 136.13, 131.71, 128.97, 128.05, 123.00, 121.71, 119.84. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₂H₁₀NO₂S]⁺: 232.0427, Found: 232.0426. The NMR data agree with those in a literature report.⁶

N-(2-Formylphenyl)furan-2-carboxamide (3k): White solid; 26.2 mg, 61% yield; m.p. 98–100 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.07 (s, 1H), 10.00 (s, 1H), 8.88 (d, J = 8.4 Hz, 1H), 7.73–7.71 (m, 1H), 7.68–7.64 (m, 2H), 7.29–7.25 (m, 2H), 6.58–6.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.42, 157.04, 147.76, 145.10, 140.51, 136.12, 136.01, 123.05, 121.92, 119.95, 115.67, 112.35. HRMS (ESI) ($[M+H]^+$) Calcd. For $[C_{12}H_{10}NO_3]^+$: 216.0655, Found: 216.0652. The NMR data agree with those in a literature report.⁶

N-(2-Formylphenyl)pentanamide (3l): Colorless liquid; 32.8 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ : 11.14 (s, 1H), 9.93 (s, 1H), 8.77 (d, *J* = 8.4 Hz, 1H), 7.69–7.66 (m, 1H), 7.64–7.60 (m, 1H), 7.25–7.21 (m, 1H), 2.47 (t, *J* = 7.4 Hz, 2H), 1.80–1.72 (m, 2H), 1.49–1.39 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.51, 172.85, 141.08, 136.18, 135.99, 122.70, 121.57, 119.89, 38.27, 27.49, 22.30, 13.73. The NMR data agree with those in a literature report.⁷

N-(2-formylphenyl)hexanamide (3m): colorless liquid; 37.3 mg, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 11.14 (s, 1H), 9.92 (s, 1H), 8.77 (d, J = 8.4 Hz, 1H), 7.67–7.65 (m, 1H), 7.62–7.58 (m, 1H), 7.21 (t, J = 7.2 Hz, 1H), 2.45 (t, J = 7.6 Hz, 2H), 1.80–1.73 (m, 2H), 1.39–1.36 (m, 4H), 0.92 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.41, 172.75, 141.01, 136.08, 135.92, 122.61, 121.51, 119.80, 38.42, 31.25, 25.02, 22.28, 13.79. The NMR data agree with those in a literature report.⁵

N-(2-Formylphenyl)heptanamide (3n): Colorless liquid; 38.7 mg, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ : 11.15 (s, 1H), 9.92 (s, 1H), 8.77 (d, *J* = 8.4 Hz, 1H), 7.68–7.66 (m, 1H), 7.63–7.59 (m, 1H), 7.24–7.20 (m, 1H), 2.46 (t, *J* = 7.4 Hz, 2H), 1.80–1.72 (m, 2H), 1.42–1.30 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.50, 172.84, 140.99, 136.14, 135.98, 122.66, 121.46, 119.79, 38.50, 31.45, 28.79, 25.33, 22.43, 13.97. The NMR data agree with those in a literature report.⁷

N-(2-Formylphenyl)octanamide (3o): Colorless liquid; 41.0 mg, 83% yield; ¹H NMR (400 MHz, CDCl₃) δ : 11.13 (s, 1H), 9.93 (s, 1H), 8.77 (d, J = 8.5 Hz, 1H), 7.68–7.66 (m, 1H), 7.63–7.59 (m, 1H), 7.24–7.20 (m, 1H), 2.46 (t, J = 7.4 Hz, 2H), 1.78–1.74 (m, 2H), 1.37–1.26 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.50, 172.87, 141.09, 136.18, 135.99, 122.69, 121.57, 119.89, 38.56, 31.65, 29.14, 28.97, 25.43, 22.58, 14.02. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₂₂NO₂]⁺:248.1645, Found: 248.1642.

N-(2-Formyl-3-methylphenyl)benzamide (4a): White solid; 33.1 mg, 69% yield; m.p. 81–83 °C; ¹H NMR (400 MHz, CDCl₃) δ: 12.57 (s, 1H), 10.52 (s, 1H), 8.83 (d, *J* = 8.5 Hz, 1H), 8.09–8.07 (m, 2H), 7.58–7.51 (m, 4H), 6.97 (d, *J* = 7.5 Hz, 1H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 194.72, 166.23, 143.33, 142.08, 136.58, 134.62, 132.05, 128.80, 127.52, 125.91, 119.57, 118.54, 19.24. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₄NO₂]⁺: 240.1019, Found:240.1017.

N-(2-Formyl-4-methylphenyl)benzamide (4b): White solid; 35.1 mg, 73% yield; m.p. 104–106 °C; ¹H NMR (400 MHz, CDCl₃) δ : 11.99 (s, 1H), 9.96 (s, 1H), 8.85 (d, J = 8.4 Hz, 1H), 8.08–8.06 (m, 2H), 7.58–7.48 (m, 5H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.92, 166.00, 138.93, 137.13, 136.29, 134.47, 132.74, 132.07, 128.83, 127.47, 122.01, 120.03, 20.50. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₄NO₂]⁺: 240.1019, Found:240.1017.

N-(2-Formyl-5-methylphenyl)benzamide (4c): White solid; 35.9 mg, 75% yield; m.p. 128–130 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.12 (s, 1H), 9.92 (s, 1H), 8.80 (s, 1H), 8.08–8.06 (m, 2H), 7.60–7.51 (m, 4H), 7.07 (d, *J* = 7.8 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.17, 166.12, 148.18, 141.19, 136.22, 134.34, 132.13, 128.83, 127.47, 124.03, 120.31, 120.01, 22.50. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₄NO₂]⁺: 240.1019, Found:240.1016.

N-(5-Ethyl-2-formylphenyl)benzamide (4d): White solid; 39.5 mg, 78% yield; m.p. 106–108 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.13 (s, 1H), 9.92 (s, 1H), 8.84 (s, 1H), 8.09–8.07 (m, 2 H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.58–7.51 (m, 3H), 7.10–7.08 (m, 1H), 2.76 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.19, 166.12, 154.26, 141.34, 136.34, 134.35, 132.10, 128.82, 127.45, 122.81, 120.18, 119.29, 29.69, 14.95. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₆H₁₆NO₂]⁺: 254.1176, Found: 254.1176.

N-(2-Formyl-5-isopropylphenyl)benzamide (4e): White solid; 40.6 mg, 76% yield; m.p. 99–101 °C; ¹H NMR (400 MHz, CDCl₃) δ: 13.13 (s, 1H), 9.94 (s, 1H), 8.89 (s, 1H), 8.08 (d, *J* = 6.8 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.58–7.52 (m, 3H), 7.15–7.13 (m, 1H), 3.09–2.98 (m, 1H), 1.33 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 195.19, 166.21, 158.85, 141.49, 136.39, 134.46, 132.12, 128.86, 127.49, 121.37, 120.40, 118.16, 35.00, 29.67, 23.44. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₇H₁₈NO₂]⁺: 268.1332, Found: 268.1334.

N-(5-(*tert*-Butyl)-2-formylphenyl)benzamide (4f): White solid; 45.1 mg, 80% yield; m.p. 115–117 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.11 (s, 1H), 9.96 (s, 1H), 9.10 (d, J = 1.6 Hz, 1H), 8.11–8.09 (m, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.59–7.53 (m, 3H), 7.32–7.30 (m, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.20, 166.24, 161.04, 141.24, 136.00, 134.45, 132.11, 128.85, 127.46, 120.40, 119.94, 117.17, 35.86, 30.94. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₈H₂₀NO₂]⁺: 282.1489, Found: 282.1493.

N-(2-Formyl-5-methoxyphenyl)benzamide (4g): White solid; 39.8 mg, 78% yield; m.p. 132–134 °C; ¹H NMR (400 MHz, CDCl₃) δ: 12.38 (s, 1H), 9.83 (s, 1H), 8.60–8.60 (m, 1H), 8.09–8.07 (m, 2H), 7.60–7.53 (m, 4H), 6.76–6.74 (m, 1H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 193.70, 166.30, 166.01, 143.69, 137.89, 134.16, 132.16, 128.80, 127.44, 116.06, 110.42, 103.67, 55.74. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₄NO₃]⁺: 256.0968, Found: 256.0966.

N-(5-Fluoro-2-formylphenyl)benzamide (4h): White solid; 36.0 mg, 74% yield; m.p. 94–96 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.27 (s, 1H), 9.94 (s, 1H), 8.77–8.74 (m, 1H), 8.07–8.06 (m, 2H), 7.75–7.71 (m, 1H), 7.62–7.53 (m, 3H), 6.97–6.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.27, 167.43 (d, *J* = 255.3 Hz), 166.20, 143.61 (d, *J* = 13.8 Hz), 138.56 (d, *J* = 12.0 Hz), 133.82, 132.44, 128.90, 127.49, 118.88, 110.48 (d, *J* = 22.9 Hz), 107.49 (d, *J* = 28.7 Hz). HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁FNO₂]⁺: 244.0768, Found: 244.0765.

N-(5-Chloro-2-formylphenyl)benzamide (4i): White solid; 40.4 mg, 78% yield; m.p. 99–101 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.14 (s, 1H), 9.95 (s, 1H), 9.05 (s, 1H), 8.06–8.04 (m, 2H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.60–7.52 (m, 3H), 7.24–7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.69, 166.10, 143.14, 142.01, 13.6098, 133.83, 132.47, 128.94, 127.51, 123.35, 120.31, 120.11. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁ClNO₂]⁺: 260.0473, Found: 260.0471.

N-(5-Bromo-2-formylphenyl)benzamide (4j): White solid; 43.1 mg, 71% yield; m.p. 115–117 °C; ¹H NMR (400 MHz, CDCl₃) δ : 12.12 (s, 1H), 9.96 (s, 1H), 9.24 (d, *J* = 1.6 Hz, 1H), 8.08–8.06 (m, 2H), 7.61–7.54 (m, 4H), 7.44–7.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.92, 166.09, 141.87, 136.95, 133.85, 132.49, 132.11, 128.96, 127.53, 126.38, 123.11, 120.64. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₄H₁₁BrNO₂]⁺: 303.9968, Found: 303.9969.

N-(2-Vinylphenyl)benzamide (5): White solid; 41.4 mg, 93% yield; m.p. 156–158 °C; ¹H NMR (400 MHz, CDCl₃) δ : 7.98 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.89–7.87 (m, 2H), 7.56–7.53 (m, 1H), 7.50–7.44 (m, 3H), 7.34–7.30 (m, 1H), 7.21–7.17 (m, 1H), 6.86 (dd, J = 17.4, 11.0 Hz, 1H), 5.70 (dd, J = 17.4, 1.2 Hz, 1H), 5.45 (dd, J = 11.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.63, 134.70, 134.47, 132.31, 131.85, 130.64, 128.76, 128.52, 127.06, 127.03, 125.41, 123.58, 118.35. The NMR data agree with those in a literature report.³

2-Vinylaniline (6): Brown oil; 20.2 mg, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.29–7.27 (m, 1H), 7.11–7.06 (m, 1H), 6.81–6.73 (m, 2H), 6.68 (d, J = 8.0 Hz, 1H), 5.63 (dd, J = 17.4, 1.4 Hz, 1H), 5.31 (dd, J = 11.0, 1.4 Hz, 1H), 3.75 (brs, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ: 143.63, 132.74, 128.70, 127.32, 124.09, 118.90, 116.05, 115.66. The NMR data agree with those in a literature report.⁸

2-Aminobenzaldehyde (7): White solid; 21.6 mg, 89% yield; m.p. 39–41 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.88 (s, 1H), 7.50–7.48 (m, 1H), 7.34–7.30 (m, 1H), 6.78 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 8.3 Hz, 1H), 6.13 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.04, 149.87, 135.68, 135.15, 118.84, 116.35, 115.99. The NMR data agree with those in a literature report.⁹

2-(*p***-Tolyl)-4***H***-benzo[***d***][1,3]oxazin-4-one (8): White solid; 37.0 mg, 78% yield; m.p. 154–156 °C; ¹H NMR (400 MHz, CDCl₃) δ: 8.24–8.21 (m, 1H), 8.19 (d,** *J* **= 8.3 Hz, 2H), 7.83–7.87 (m, 1H), 7.67 (d,** *J* **= 7.7 Hz, 1H), 7.51–7.47 (m, 1H), 7.31 (d,** *J* **= 8.1 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.66, 157.29, 147.14, 143.36, 136.45, 129.47, 128.53, 128.29, 127.95, 127.44, 127.07, 116.93, 21.65. HRMS (ESI) ([M+H]⁺) Calcd. For [C₁₅H₁₂NO₂]⁺: 238.0863, Found: 238.0868**

8. References

- [1] R. B. Dateer and S. Chang, J. Am. Chem. Soc., 2015, 137, 4908.
- [2] Y. Park, K. T. Park, J. G. Kim and S. Chang, J. Am. Chem. Soc., 2015, 137, 4534.
- [3] L. Fra, A. Millán, J. A. Souto and K. Muñiz, *Angew. Chem., Int. Ed.*, 2014, **53**, 7349.
- [4] P. Seliga and W. Ravenb, Org. Lett., 2014, 16, 5192.
- [5] D. Zhao, Qi. Shen, Y.-R. Zhou and J.-X. Li, Org. Biomol. Chem., 2013, 11, 5908.

- [6] J. Yu, D. Zhang-Negrerie and Y. Du, Eur. J. Org. Chem., 2016, 3, 562.
- [7] K. K. Park and J. Y. Jung, *Heterocycles*, 2005, 65, 2095.
- [8] M. Arisawa, Y. Fujii, H. Kato, H. Fukuda, T. Matsumoto, M. Ito, H. Abe, Y. Ito and S. Shuto, *Angew. Chem., Int. Ed.*, 2013, 52, 1003.
- [9] Y. Matano and H. Nomura, Angew. Chem., Int. Ed., 2002, 41, 3028.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

0.000

