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1. Experimental 

 

1.1 Sample preparation 

 

The ionic liquid (IL) under study consisting of trihexyl(tetradecyl)phosphonium cations, [P6,6,6,14]+, and 

bis(mandelato)borate anions, [BMB]-, was synthesised in the group of Chemistry of Interfaces at 

Luleå University of Technology [1]. In the present work, initially a thin layer of the IL was kept under 

vacuum (pressure less than 10-3 mbar) at 383 K for 4 h in order to remove residual moisture. Then 

300 µl of the IL was transferred into a 5 mm glass tube and 129Xe gas at 1 atm was added to the tube. 

After that the tube was sealed with a flame. 

 

1.2 NMR experiments 

 

¹H NMR diffusion measurements were carried out as a function of temperature with temperature 

stabilisation time of 30 minutes using a PGSTE experiment with bipolar gradients. The low 

temperature experiments (296, 303 and 309 K) were carried out by Bruker Avance III 300 MHz 

spectrometer at 7 T, using a Diff 50 diffusion probe. The maximum gradient strength was 9.49 Tmˉ1. 

The high temperature experiments (above 320 K) were carried out at Avance III 600 MHz 

spectrometer at 14 T, using a BBFO probe. The maximum gradient strength was 0.48 Tmˉ1. In all the 

experiments, the diffusion time Δ was 100 ms, the number of gradient steps was 64 and 8 scans were 

acquired. In the low temperature experiments, the length of the gradient pulse δ was varied from 4 

to 6.7 ms, while in the high temperature experiments the length of the gradient pulse δ was varied 

from 12 to 30 ms. 

 

In the D-T2 experiment, the maximum diffusion gradient strength was 9.49 Tmˉ1, the number of 

gradient steps was 16, the lengths of the gradient pulse was 3.5 ms, and the diffusion time Δ was 

100 ms. In the CPMG T2 block, the number of echoes was 32, and the echo time was 2 ms. The 

experiment was done at 296 K with 32 scans and the total experiment time was approximately 19 

hours. 
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In the T2-T2 exchange experiment, the number of echoes in both CPMG blocks was 32, and the echo 

time was 2 ms. The mixing times were 50, 100, 200 and 400 ms. The experiment was carried out at 

296 K. The total experiment time with 8 scans was about 8 hours.  

 

2. Experimental results 

 

2.1 1H NMR spectra 

 

Figure S1. 300 MHz 1H NMR spectra of [P6,6,6,14][BMB] as a function of temperature. The resonance 

lines become much broader below 320 K due to reduced mobility of ions in the IL. This may be a 

consequence of either homogeneous or inhomogeneous line broadening. 
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2.2 1D Diffusion  

 

Figure S2. Natural logarithm of the signal amplitude E in the 1H PGSTE-BP diffusion NMR 

experiments on [P6,6,6,14][BMB] as a function of b=ɣ2δ2g2 (Δ-δ/3). Here,  is the gyromagnetic ratio of 

1H, δ and g are the amplitude and duration of gradients and Δ is the diffusion time. The 

dependencies are clearly non-linear at the temperatures between 296 and 309 K, indicating that 

there are more than two diffusion components. Laplace inversion of the signal amplitudes E resulted 

in the D distributions shown in Figures 1c and 1d. 

 

The temperature dependence of the diffusion coefficient is represented by the Arrhenius function 
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where D0 is the pre-exponential factor, ED is the activation energy for diffusion, and R is the gas 
constant. By taking natural logarithm on both sides, equation (S1) becomes as follows: 
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Figure S3. Arrhenius plots for (a) the cation and (b) the anion. For the cation, at low temperatures 

(high 1000/T), the activation energy of the slowly diffusing phase is 75±5 kJ/mol, while for the fast 

diffusing component it is 70±30 kJ/mol. At higher temperatures, where there is only a single phase, 

the activation energy is 49.6±1.0 kJ/mol. In case of the anion at low temperatures, the activation 

energy of the slowly diffusing phase is 81±3 kJ/mol, while for the fast diffusing phase it is 90±30 

kJ/mol. At higher temperatures, where there is only a single phase, the activation energy is 50.0±0.8 

kJ/mol. 
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2.3 Relaxation measurements 

 

Figure S4. (a) 1H T1 relaxation times of [P6,6,6,14][BMB] IL measured by the inversion recovery pulse 

sequence for the anion and the cation. Only a single relaxation time component was observed 

because of exchange averaging. T2 relaxation times measured by the (b) CPMG and (c) PROJECT [2] 

experiments as the values were obtained from a single exponential fit to the experimental data. The 

values reflect the T2 in the slow phase, which is dominating in the whole temperature range. PROJECT 

removes the effect of homonuclear J-couplings on the amplitude decay. Because the T2 values 

measured by the CPMG and PROJECT methods are in quite good agreement, the effect of 

homonuclear J-couplings is insignificant for [P6,6,6,14][BMB] IL. 
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Figure S5. Natural logarithm of the signal amplitude E as a function of time t in the 1H CPMG NMR 

experiments carried out at (a) 296 K and (b) 309 K. Nonlinear behaviour shows that there are a few 

T2 components. Laplace inversion of the signal amplitude E resulted in the T2 distribution shown in 

Figure 2b. 
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2.4 129Xe NMR spectra 

 

Figure S6. (a) 129Xe NMR spectra of xenon dissolved in [P6,6,6,14][BMB] measured at 7.1 T (129Xe 

frequency 83.0 MHz). Increased linewidth at high temperatures (T > 329 K) reflects increased 

temperature gradients in the sample. (b) The chemical shift of 129Xe as a function of temperature. 

Linear behaviour indicates that there are no abrupt changes in the density or orientation of ions in 

the IL.  
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2.5 T2-T2 relaxation exchange for the anion  

 

Figure S7. (a) T2-T2 relaxation exchange maps for the anion as a function of the mixing time at 296 

K. (b) Integrals of the peaks as a function of the mixing time. Fits of the two-site exchange model to 

the data are shown by solid lines. The resulting exchange rate is k = 1.30.3 s-1 (kSF = 0.0080.002 s-

1, kFS = 1.30.3 s-1). 
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3. Relaxation data in terms of a microscopic model  

 
In reference [3], diffusion data on the [P6,6,6,14][BMB] system is qualitatively discussed in terms of 

electrostatic interactions. In particular, two different diffusion constants are estimated at room 

temperature. The detailed relaxation and diffusion experiments provided in this work enable a 

discussion of low temperature data in terms of a microscopic model that supports a picture with 

aggregated and individual ions. 

 

3.1 IL relaxation models 

 
 It has been shown possible to measure the translational diffusion coefficients in ionic liquids [4] via 

the inter-molecular dipole-dipole (inter-DD) relaxation mechanism in combination with the low field 

1/T1=R1 experiments. In this NMR dispersion (NMRD) technique, i.e., R1(ω) versus resonance 

frequency (ω=γHB0, where γH is the proton gyromagnetic ratio and B0 the static magnetic field) slow 

dynamics is probed that influence the spin relaxation. The T2 relaxation measured in this work has 

a dependence on zero frequency spectral density (introduced below) and is thus also expected to 

have a significant dependence on the slow molecular dynamics. 

 

Several works considered ionic-liquid NMRD relaxation modelled with translational diffusion and 

intermolecular (inter-DD) as a dominating low-field mechanism [4-7]. However, recently [8] this 

view on possible relaxation mechanism is contrasted, showing that the NMRD profiles can be 

rationalised using intra- and inter-ionic spin DD interactions, where anions are mainly modulated by 

ionic reorientation because of temporary correlations with cations, where the modulation by 

translational diffusion only plays a minor role. In the system of reference [8] the estimated ion-pair 

reorientation correlation time is slow at nano-second time scale. An ionic system with a different 

anion compared to our study ([P6,6,6,14][Cl]) was explored with NMR relaxometry [7]. In reference [7] 

a biexponential 1/T1 was observed and the two processes where attributed to the cation-proton 

spin density of CH2 and CH3 respectively. 
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Figure S8. Scheme of a relaxation model, C: cation, A: anion, F: fast diffusing molecule, S: slow 

diffusing A+C complex, dS: closest contact distance for S, dF: closets contact distance for A or C, the 

contact distance for S-F is dSF=1/2(dS+dF). 

 

In this work LNMR provide detailed experimental information with the D-T2-map (D denoting 

diffusion constant) and T1 rates. A relaxation model needs in this case to explain both the anion and 

the cation observations. A hard-sphere relaxation model is considered, assuming a homogenous 

sample [4, 9], where aggregate or free ions dynamics determine the NMR relaxation mechanisms: 

intra-DD, intra-CSA (chemical shift anisotropy) and inter-DD. The scheme is depicted in Figure S8, 

where the experimentally determined diffusion constants are proposed to be an anion-cation 

complex as the slowly diffusing entity (S) and the fast diffusion (F) is either observed with cation (C) 

or anion (A) spins, the later for simplicity assumed to have equal diameters. Other processes that 

may contribute to the NMR relaxation can come from the association and breaking of ion 

complexes, modulating the chemical shift [8]. Such process may be implicitly present in the extreme-

narrowing factor denoted “x, x=C,A” in Eq. S3 below, introduced as a factorised relaxation 

contribution. Given the experimental observation of F to S exchange at 1.11 s-1 suggests that an 

association-breaking process is too slow at 296 K in comparison with the observed millisecond T2, 

to form a significant field-dependent mechanism. The relaxation rate for slowly diffusing cations 

(SC) is given by: 
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with the corresponding FC, SA and FA rates given by alternating the superscripts. In Eq. S3 1/T1 and 

1/T2 have i=1 and i=2 respectively,  is the proton resonance frequency; the three types of inter-DD 

contributions for SC are: interaction with the S-complex (SC-SC and SC-SA), the fast diffusing cation 

(SC-FC) and the fast diffusing anion (SC-FA). The proton chemical shift anisotropy (CSASC) is included 

as well. The experimental data are provided in Table S1, where the explicit rates for SC, DC, SA and 

FA are provided for T2 and D, whereas for T1 only the single C or A observation is recorded. The 

model for 1/T1 rate is a combined weighted contribution: 

 

R1

y w( ) = PsR1

sy w( )+ 1- Ps( )R1

fy w( ), y= C, A      (S4) 

 

where Ps[0,1] is the fraction proton spins of slowly diffusing compound. The individual relaxation 

rate contributions are computed from [4, 10]: 

   

  (S5)

 

where dSF=1/2(dS+dF) (or dS, dF) are the close-contact distances (see Figure S8), NFC is the FC  proton 

spin density, the spin quantum number is IH=1/2, ħ is the Planck constant in angular units, μ0 is the 

vacuum permeability and the intra-DD constant (CDD) depends on the effective proton distance reff. 

The inter-DD interaction is assuming spins located at the centre of the spheres. The second rank 

chemical shift anisotropy [10] is given by  x
CSA (for x=A,C) in parts per million (ppm). 
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Table S1: Experimental translational diffusion (m2s-1) and relaxation rates, the later at two magnetic 

fields. 

 
DSC=9.6e-14 

 

DFC =3.0e-12 

 

DSA=9.7e-14 

 

DFA=4.0e-12 

 
  

Field (T) T2
SC (ms) T2

FC (ms) T2
SA (ms) T2

FA (ms) T1
C (s) T1

A (s) 

7.04 6.0 69 4.5 55 0.56 0.56 

14.09 5.5 80 4.5 72.5 0.96 0.96 

 

3.2 Model dynamics  

 

Hard sphere intramolecular spectral densities are computed from 

Jintra

x nw( ) =
t R

x

1+ (nwt R

x )
,       (S6) 

for x=A,C where x
R is the second rank rigid body rotational diffusion correlation time.  

The inter-DD spectral density is given by the hard sphere translational diffusion model [5, 11], in the 

analytical format (see page 61 in reference 10). The dominating inter-DD zero frequency spectral 

densities for T2 are proportional to the characteristic correlation times (depending on self and cross 

interacting spins respectively, see Figure S8): 

t D

FC =
dF

2

2DFC

; t D

FA =
dF

2

2DFA

; t D

SC = t D

SA = t D

S =
dS

2

2DS

;

t D

SyFx =
dSF

2

DS + DFx

; t D

FyFx =
dF

2

DFy + DFx

, x = (C, A), y = (C, A);
  (S7) 

 

3.3 Model parameters  

 

Inter-DD relaxation depends on the molecule size (here simplified as the diameters of two spheres) 

and the experimentally known translational diffusion constants, as well as the proton spin densities 

(NSC, NSA, NFC and NFA). Proton spin densities are computed from the fraction of slow diffusing 

spins (model parameter Ps) and the mass density of the system at 298 K [1]. Note that Ps also enter 

the model in 1/T1 calculation (see Eq. S4). The molecular rotational correlation time for molecule Y 

(Y=S,FC,FA) is R
Y=D

Y  C (see Eq. S7), where theoretically C=1/9 for the force free diffusion model 
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obtained by relating the hydrodynamic radius for translational and rotational diffusion [9]. This 

constant is typically found to be smaller in “real” liquids [9], and is kept as an adjustable parameter 

in this study. There are a few fast processes that contribute to the extreme narrowing terms ( in 

Eq. S3) that may include intramolecular carbon chains motion and chemical shift modulation from 

ion-ion cluster formation [8]. These field independent contributions are not considered explicitly by 

analysing the difference: 

 

DRy = R2

y - R1

y, (y= A,C)       (S8)

 for S and F, respectively. For the majority of relaxation mechanisms  cancel out [10] (see Eqs. S5 

and S8). Caution is needed with the CSA mechanism where 1/3CSA formally remains [10]. However, 

fast processes have a small influence on the dominating R2 in Eq. S8; hence, this will at most cause 

a minor deviation. The explicitly modelled CSA contribution is performed with two fixed CSA 

constants for the anion and the cation, respectively. The cation have protons bound to CH2 and CH3, 

whereas for the anion double-bond carbons provide the proton sites, hence, the ions can be 

expected to have different CSA constants. In order to avoid additional adjustable parameters 

quantum chemistry estimates [12] at 1 ppm and 3.7 ppm are used for C and A, respectively 

(assuming zero asymmetry parameter for CSA). The intra-DD coupling CDD, represents a large 

number of DD interactions, and is kept as an adjustable parameter from which the r-6 weighted 

effective H-H distance (reff) is extracted.  

 

3.4 Model results 

 

The model results are given in two main sections; the first part presents the experimental and model 

results for a range of spin-fractions of the slow-diffusion complexes (PS), analysed with conventional 

minimization routine. Secondly, the important reliability of the model parameters are analysed 

using Monte Carlo simulations. 

The deviation from experimental R is formulated as a mean-square error (MSE): 

MSE =
1

(N - M )

DRi

EXP - DRi

MODEL dS,dF ,CDD,Cé
ë

ù
û( )

2

2s i

2
i=1

N

å ,     (S9) 

with N(=8) REXP (see Eq. S8), involving eight T2, and four T1. Four experimental diffusion constants 

are fixed parameters in the RMODEL, (i
2)-1 is the weight of observation “i”, here set to unity. The 
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M(=4) fitting parameters are: dS, dF, CDD and C, where the last parameter is the fraction of rotational 

and translational diffusion correlation times. With a MATLAB implementation of MSE (Eq. S9) 

minimisations are done with the Nelder-Mead (Simplex) method [13], providing an unconstrained 

parameter search. First, a screening with PS in the range from zero to 100 % in steps of 0.5 % was 

performed. This revealed a lowest (MSE)1/2 for PS>95 % with minima at spin fractions 99.5 % and 0.5 

% for slow and fast diffusing spins, respectively. In Table S2 representative fitting results are shown 

with the model parameters, (MSE)1/2, the spin-fraction (PS) and model correlation times for S and F 

rotational diffusion. A general feature of the screening result is that the minima of (MSE)1/2 may be 

obtained with unphysical model parameters (highlighted in red). For instance, the short 1.3 Å 

effective H-H distance is shorter than estimated minimal H-H distance at ca. 1.7 Å in CH2; secondly, 

rotational- and translational-diffusion correlation time ratios (C) that are larger than 1/9 suggest 

that rotational diffusion is faster than a force-free motion. To discuss the model further both a 

restricted parameter search needs to be considered as well as a realistic error estimation of the 

parameters. These aspects are solved in the next subsection with Monte Carlo simulations. 
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Table S2: Minimisation result (MSE, see Eq. S9) for relaxation rates recorded at two frequencies: 

300 and 600 MHz for a range of spin fractions of slowly diffusing complexes (PS). The fitted 

parameters are the diameters of slowly and faster diffusing complex/ion (dS) and (dF), respectively, 

the ratio (C) of rotational and translational correlation times and the effective intramolecular 

proton-proton distance (reff, extracted from intra-DD). Diffusion constants (included as fixed 

parameters in the model) and measured relaxation rates are listed in Table S1, a total of 16 

experimental observations. CSA parameters from section 2.3 are used. A general feature of the 

screening result is that the minima of (MSE)1/2 may be obtained with unphysical model parameters 

(highlighted in red). 

Fitted parameters    

dS (Å) dF (Å) C reff (Å) (MSE)1/2 PS (%) R
SC (s) R

FC (ns) 

12 6.3 1.0 5.0 10.6 100 7.1 66 

87 21 1.8e-2 5.0 10.5 99.5 7.0 10 

12 6.9 0.9 5.0 10.5 99 7.0 54 

4.5 4.1 6.4 7.2 10.6 98 7.0 140 

4.9 4.5 5.6 6.4 10.6 97 7.0 140 

30 13 4.6 5.9 10.7 96 7.0 150 

32 14 6.9e-2 4.2 13.4 95 3.7 16 

7.5 8.1 2.4 5.2 10.9 90 7.0 200 

573 611 4e-4 4.6 11.8 50 7.2 200 

25 29 1.7e-3 4.6 10.8 10 7.0 390 

37 51 5.8e-5 1.3 17.8 2 4e-3 0.2 

2.4e+4 3.6e+4 2.9e-4 4.6 10.7 1 7.0 380 

 

3.5 Parameter error estimation  

 

The best-fit spin fraction case (PS=99.5 % in Table S2) is explored further in this section. This is done 

by considering the maximum likelihood of the MSE1/2 (see Eq. S9), hence, where MSE1/2 have a 

Gaussian probability distribution and implement Markov-chain Monte Carlo [14] (MCMC) to sample 

the unknown four-dimensional parameter distribution. This enables realistic estimation of 

parameter error bounds for a given set of constraints. The MCMC sampling was done following the 

Metropolis-Hastings algorithm [14] where initial configurations are generated uniformly and kept 

within the constraints (see Table S3) by implementing reflective boundary condition. After 

simulating an initial “burn in” period the productive estimation [14] follows. Four trajectories with 

1e+7 MCMC-steps where generated. Given these trajectories it is seen that the target distribution 
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does not depend on the initial condition [14]. In Figure S9 the normalised projected 1D histograms 

are given. First we note that the range of the histograms in Figs. S9a-S9c does not reach the 

boundaries in Table S3 for the parameters dF, dS and CDD. However, for the ratio C=R/D (Fig. S9d), 

the MCMC reaches the boundaries at 0.005 and 0.111, respectively. These boundaries are chosen 

with the force free diffusion as the maximum and the minimum are set to smaller values than 

typically found for normal liquids and ionic liquids [4, 15]. Note that larger C than the force free 

diffusion, the 1/9 introduced above in section 3.3, points towards an inconsistent model since these 

ion clusters are expected to entangle and interact significantly. From the MCMC trajectories 

parameters are estimated with the mean values (dF=20.5 Å, dS=82 Å, reff=4.68 Å and C=0.035) and a 

95 % probability error interval from the integration of the histograms providing 15<dF<31 Å, 

50<dS<160 Å, 4.62<reff <4.75 Å and 0.01<C<0.1. Hence, the S sphere is distinctly larger than the F 

sphere. Other properties of interest are straightforward to estimate, such as the ratio of the S and 

F model volumes VS/(2VF) that has a mean of 32 with 95 % probability interval 10<VS/(2VF)<66. 

Hence, if the fast diffusing entity are individual ions and the complex is neutral, the model predicts 

the complex to contain more than 10 and less than 66 ion-pairs with 95 % probability. 

Finally, it is interesting to explore the role of CSA. In Figure S10 bar plots of the 1/T2 rates 

without and with the CSA relaxation mechanism in Figs. S10a and S10b, respectively (models are 

optimised at PS=99.5 % following Section 3.4 with the resonance frequency of protons 600 MHz). 

However, note that the optimisation is done for the difference presented in Eq. S8. Although the 

MSE1/2 is factor 1.7 smaller including the CSA contribution, the physical picture is the same, showing 

a slowly diffusing complex, where 1/T2 is dominated by the intra-DD and for fast diffusing ions the 

mechanism is inter-DD. Also without CSA the slowly diffusing complex is of a larger dimension 

(dS>dF). However, the CSA should not be ignored on physical grounds at these high magnetic fields 

and, in addition, improves the analysis by reducing the MSE. In this work the extreme narrowing 

contributions (see  in Eq. S3) are not explicitly modelled and thus 1/T1 is underestimated in a direct 

comparison. In particular, the diffusion modulated intermolecular 1/T1 contribution is negligible. 

 

3.6 Summary 

 

It is found that a microscopic relaxation model is consistent with the picture of large aggregates 

(mean diameter of 82 Å) undergoing slow translational diffusion and with rotational correlation time 
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7 s, containing 99.5 % of the proton spins; complemented with smaller entities (mean diameter of 

ca. 20 Å) rotating with correlation time of 10 ns. Markov-chain Monte Carlo simulation with the 

proposed model provides consistent results with the conventional minimisation and is essential in 

order to conclude on the reliability of the suggested model. 

 

Table S3: Parameter boundaries in the MCMC simulation. 

Boundary dF (Å) dS (Å) CDD (s-1) C 

Min 2 5 0.75 0.005 

Max 1000 2000 7.54e+5 0.111 

 

Figure S9. Histogram from MCMC simulation (with Ps=99.5 %) for parameters dF (a), dS (b), CDD (c) 

and C (d).  

 

 

Figure S10. Experimental and computed 1/T2 rates excluding (a) and including (b) the CSA relaxation 

mechanism. Proton resonance frequency is 600 MHz and the computed rates are for parameters 

optimised at PS=99.5 %.  
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