Supporting Information

Prebiotic Synthesis of 2-Deoxy-D-Ribose from Interstellar

Building Blocks Promoted by Amino Esters or Amino Nitriles

Andrew M. Steer, Nicolas Bia, David K. Smith and Paul A. Clarke*

Table of Contents

General Experimental	page 2
Synthesis of standards	page 3
Synthesis of catalysts	page 13
Synthesis of Cyclic By-product 17	page 19
General Procedures for the Prebiotic Formation of Carbohydrates	page 21
Copies of Spectroscopic data	page 26

General Experimental

Unless otherwise noted all compounds were bought from commercial suppliers and used without further purification. Where a solvent is described as "dry" it was purified by PureSolv alumina columns from Innovative Melting points were determined using a Stuart SMP3 Technologies. apparatus. Optical rotations were carried out using a JASCO-DIP370 polarimeter and $[\alpha]_{D}$ values are given in 10^{-1} deg.cm².g⁻¹. Infra-red spectra were acquired on a ThermoNicolet Avatar 370 FT-IR spectrometer. Nuclear magnetic resonance spectra were recorded on a Jeol ECS-400, a Jeol 500 Avance III HD 500 or a Jeol AV500 at ambient temperature. Coupling constants (J) are quoted in Hertz. Mass spectrometry was performed by the University of York mass spectrometry service using electron spray ionisation (ESI) technique. Thin layer chromatography was performed on glass-backed plates coated with Merck Silica gel 60 F₂₅₄. The plates were developed using ultraviolet light, acidic aqueous ceric ammonium molybdate or basic aqueous potassium permanganate. Liquid chromatography was performed using forced flow (flash column) with the solvent systems indicated. The stationary

2

phase was silica gel 60 (220–240 mesh) supplied by Fluorochem or silica gel Merck TLC grade 11695 supplied by Sigma-Aldrich. HPLC was performed using an Agilent 1100 series instrument using a Daicel Chemical industries chiral AD column using a range of wavelengths from 210-280 nm for detection.

Synthesis of Standards

(S,R,E)-5-[N,N-diphenyl)-hydrazono]-pentane-1,2,3-triol (5)

2-Deoxy-D-ribose (50 mg, 0.37 mmol) and diphenyl hydrazine (125 mg, 0.68 mmol) were dissolved in methanol (5 mL). Two drops of acetic acid were added and the reaction stirred at room temperature for 1 hour. The reaction mixture was concentrated *in vacuo* to give a brown oil. Upon purification *via* preparative thin layer chromatography (5:95 MeOH : DCM) the pure compound, **5**, was obtained as a white crystalline solid in a 98 % yield. (100 mg 0.336 mmol); **Melting point** 114-117 °C; **IR** (ATR): 3221, 2926, 2875, 1586, 1487, 1298 cm⁻¹; **[α]**_D²⁵ (deg cm³ g⁻¹ dm⁻¹) = -5.1 (c = 0.10 g cm⁻³ in methanol); ¹H NMR (500 MHz CD₃OD): δ 7.33 (4H, dd, J= 8.6, 1.2 Hz), 6.64 (1H, t, J= 5.5 Hz), 3.69 (1H, dd, J= 11.3, 3.7 Hz), 3.67 (1H, ddd, J= 10.4, 8.6, 3.7 Hz), 3.53 (1H, dd, J= 11.3, 6.5 Hz), 3.43 (1H, ddd, 10.4, 6.5, 3.8 Hz), 2.64 (1H, ddd, J= 14.9, 5.5, 3.8 Hz), 2.41 (1H, ddd, J= 14.9, 8.6, 5.5 Hz); ¹³C NMR (500 MHz CD₃OD): δ 145.7, 139.1, 130.7, 125.1, 123.6, 76.0, 72.0, 64.6, 37.5; **HRMS**

ESI (m/z): $[M+H]^+$ calculated for C₁₇H₂₁N₂O₃, 301.1547, found 301.1543. $[M+Na]^+$ calculated for C₁₇H₂₀N₂O₃Na, 323.1366, found 323.1360.

(1,1-Dipehnyl-hydrazono)-propane,1-2-diol (11)

D-glyceraldehyde (51 mg, 0.56 mmol) was dissolved in methanol (8 mL). Diphenyl hydrazine (172 mg, 0.67 mmol) followed by two drops of acetic acid was added and stirred for 1 hour before concentrating *in vacuo* to give the crude product as a brown oil. Purification *via* column chromatography (10 : 90 MeOH : DCM) yielded **11** as a crystalline solid in a 95 % yield (145 mg, 0.54 mmol). **Melting point** 91-93°C; **IR (ATR)** 3281, 2932, 1589, 1492, 1293, 1052 cm⁻¹; $[\alpha]_{D}^{25}$ (deg cm³ g⁻¹ dm⁻¹) -0.083 (c= 1.0 g cm⁻³, in chloroform) literature = -3.3 (c= 32.3, in chloroform)¹; ¹H NMR (500 MHz, CD₃OD): δ 7.40-7.34 (1H dd, J= 8.5, 7.4 Hz), 7.14 (2H, tt, J= 7.4, 1.2 Hz), 7.07-7.04 (1H dd, J= 8.5, 1.2 Hz), 6.45 (1H, d, 5.2 Hz), 4.31 (1H, ddd, 6.5, 5.2, 5.2, Hz), 3.66 (1H, dd, J= 11.3, 5.2 Hz), 3.60 (1H, dd, J= 11.3, 6.5 Hz); ¹³C NMR (500 MHz, CD₃OD): δ 145.1, 138.6, 130.8, 125.5, 123.5, 73.6, 65.8; HRMS ESI (*m/z*): [M+H]^{*} calculated for C₉H₁₁N₄O₆, 257.1285, found 257.1279. [M+Na]⁺ calculated for C₉H₁₀N₄O₆Na, 279.1104, found 279.1100. Synthesis of Standard (6)

2-Bromo-2-deoxy-D-lyxono-1,4-lactone (13)

D-Lyxose (3.00 g, 22.2 mmol), and solid sodium bicarbonate (2.52 g, 30.0 mmol) were dissolved in deionised water (25 mL) and stirred at 0 $^{\circ}$ C for 5 minutes. Bromine was added dropwise to the solution every 20 minutes for 1 hour (3 x 0.38 mL) and the reaction left to stir at room temperature for 4 hours. Excess sodium thiosulfate was added to destroy the excess bromine and concentrated *in vacuo* to give an off-white precipitate. The crude material was purified by extracting with boiling methanol (3 x 50 mL). The extracts were combined and concentrated *in vacuo* to give the product as an off white solid (4.73 g). This was used in the next step without further purification.

Crude D-Lyxno-1,4-lactone **12** (1.00 g, 6.75 mmol), was added to a solution of 33 % hydrogen bromide in acetic acid (10 mL) and stirred for 2 hours at room temperature at which point TLC confirmed that all of the starting material had

5

been consumed. The reaction was quenched via the addition of methanol and the reaction mixture stirred for a further 24 hours. The mixture was concentrated in vacuo, dissolved in chloroform (10 mL) and extracted with water (7x 10 mL). The aqueous extracts were combined and concentrated in vacuo to give the crude product as a red oil. Purification via flash column chromatography over silica (50:50 cyclohexane : ethyl acetate) gave the title compound **13** as a yellow oil in a 14 % yield over 2 steps (0.20 g, 0.92 mmol): IR (ATR): 3315, 2991, 2967, 2949, 1763, 1464, 1372, 1329, 1182, 1145, 1023 cm⁻¹; $[\alpha]_{D}^{25}$ (deg cm³ g⁻¹ dm⁻¹) +20.1 (0.2 g cm⁻³ in ethyl acetate) literature +26 (c= 0.025 g cm⁻³, ethyl acetate)²; ¹H NMR (400 MHz D₂O): δ 4.91(1H, m), 4.77 (1H, dd, J= 5.2, 4.4 Hz), 4.68 (1H, d, J= 4.4 Hz), 3.95 (2H, dd, J=5.2, 0.9 Hz); ¹³C NMR (400 MHz D₂O): δ 174.8, 83.3, 74.3, 59.1, 42.7; ESI (*m/z*) $[M+Na]^+$ calculated at 232.9422 for $C_5H_7Br^{79}O_4Na$ and 234.9397 for C₅H₇Br⁸¹O₄Na HRMS found 232.9420. An artefact of ESI MS through methanolic opening of lactone calculated for $C_6H_{11}Br^{79}NaO_5$, 264.9682, HRMS found 264.9686.

2-Bromo-2-deoxy-D-threo-pentofuranose (14)

D-lyxono-1,4-lactone **13** (435 mg, 2.06 mmol) was dissolved in water (7 mL) and stirred at 0 °C and amberlite IR-120-H resin was added to reduce the pH to pH 3. Sodium borohydride (39 mg, 1.03 mmol) was added in portions along with amberlite resin to keep the pH of the reaction to approximately 6. The reaction was then allowed to stir for 30 minutes at which time there was

no starting material visible by TLC. The reaction mixture was filtered to remove the resin and then concentrated *in vacuo* to give a mixture of crude product and over reduced material (367 mg). Purification *via* flash column chromatography over silica (40:60 petroleum ether : ethyl acetate) gave the pure title compound **14** as a colourless oil in a 45 % yield as a mixture of anomers (199 mg, 0.93 mmol); All data correlated with the literature.² **IR** (ATR): 3307, 2943, 2836, 1417, 1353, 1110, 1060, 1016 cm⁻¹; **[α]**_D²⁵ (deg cm³ g⁻¹ dm⁻¹) +64.4 (c= 1.0 g cm⁻³, methanol) literature +51.5 (0.4 g cm⁻³ in water)²; ¹³C NMR (400 MHz D₂O): α-anomer: δ 174.8, 83.3, 74.3, 59.1, 42.8; β-anomer: 177.7, 80.4, 70.7, 69.6, 48.9, 26.5; ESI (*m*/*z*) [M+Na]⁺ calculated at 232.9420 for C₅H₉Br⁷⁹O₄Na and 234.9400 for C₅H₉Br⁸¹O₄Na, HRMS found 232.9475.

2-Deoxy-D-threo-pentofuranose (15)

To a flask containing 2-bromo-2-deoxy-D-threo-pentofuranose **14** (75 mg, 0.35 mmol) in dry THF (5 mL), tin tributyl hydride (0.11 mL, 0.43 mmol) and AIBN (9.3 mg, 0.057 mmol) were added and refluxed for 4 hours. At this point the reaction was deemed finished through TLC and the reaction mixture concentrated *in vacuo*. The crude mixture was partitioned between water (10 mL) and ethyl acetate (10 mL), extracted with water (3x 10 mL) and concentrated *in vacuo* to give the title compound **15** as a colourless oil in an 86 % yield as a mixture of anomers (47 mg, 0.30 mmol). **IR** (ATR): 3327, 2933, 2886, 1648, 1436, 1359, 1263, 1239, 1129, 1060 cm⁻¹; **[\alpha]**_D²⁵ (deg cm³)

 $g^{-1} dm^{-1}$) -10 (c= 0.5 g cm⁻³, water) literature -1.9 (0.5 g cm⁻³)³; ¹H NMR as a mixture of furanose and pyanose forms and a mix of α and β anomers; ¹³C NMR (400 MHz CD₃OD): δ 95.7, 93.1, 72.2, 27.1, 69.7, 66.7, 63.9, 40.7, 38.7; HRMS ESI (*m/z*): [M + Na]⁺ C₅H₁₀O₅ calculated for, 157.0471, found 157.0470.

(R,R,E)-5-[(N,N-diphenyl)-hydrazono]-pentane-1,2,3-triol (6)

2-Deoxy-D-threopentose **15** (29 mg, 0.21 mmol) and diphenyl hydrazine (77 mg, 0.42 mmol) were dissolved in methanol (5 mL). Two drops of acetic acid were added and the reaction stirred at room temperature for 1 hour. The reaction mixture was concentrated *in vacuo* to give a brown oil. Upon purification *via* preparative thin layer chromatography (15:95 MeOH : DCM) the pure compound, **6**, was obtained as a white crystalline solid in a 84 % yield. (53 mg, 0.18 mmol); **IR** (ATR): 3351, 3059 , 2898, 1588, 1493, 1297 cm⁻¹; **[α]**_D²⁵ (deg cm³ g⁻¹ dm⁻¹) +8.0 (c = 0.10 g cm⁻³, methanol); **¹H NMR** (500 MHz CD₃OD); δ 7.36 (4H, dd, 8.4, 7.4 Hz), 7.12 (2H, dt, 7.4, 1.1 Hz), 7.06 (4H, dd, 8.4, 1.1 Hz), 6.65 (1H, t, 5.5 Hz), 3.81 (1H, ddd J= 8.6, 5.4, 3.5 Hz), 3.66 (1H, dd, J= 11.1, 5.1 Hz), 3.58 (1H, dd, J= 11.1, 6.4 Hz), 3.52 (1H, ddd, J= 6.4, 5.1, 3.5 Hz), 2.58-2.48 (2H, m); ¹³C NMR (500 MHz CD₃OD): δ 145.6, 138.7, 130.7, 125.1, 75.1, 71.2, 64.3, 37.6; **HRMS** ESI (*m*/*z*): [M+Na]⁺ calculated for C₁₇H₂₀N₂O₃Na, 323.1362, found 323.323.1366.

D-Glyceraldehyde (50 mg, 0.56 mmol) and 2,4-dinitrophenylhydrazine (132 mg, 0.67 mmol) were dissolved in water (2.5 mL) and stirred at room temperature for 24 hours. The reaction mixture was concentrated *in vacuo* to give the crude product as an orange solid. Purification *via* flash column chromotography (1:1 petroleum ether : ethyl acetate) gave the desired product, **16**, as an orange solid in a 45 % yield (67 mg, 0.25 mmol); **IR** (ATR): 3301, 3106, 3094, 2929, 1614, 1586, 1504, 1419, 1320, 1222, 1090, cm⁻¹; $[\alpha]_{D}^{25}$ (deg cm³ g⁻¹ dm⁻¹) +32.0 (c= 0.10 in chloroform) literature +36.9 (c= 0.07, CHCl₃)⁴; ¹H NMR (400 MHz DMSO-d⁶); δ 11.40 (1H, br s), 8.84 (1H, d, 2.7 Hz), 8.36 (1H, dd, 9.6 Hz, 2.7 Hz), 7.95 (1H, d, 5.8 Hz), 7.91 (1H, d, 9.6 Hz), 4.17 (1H, q, 5.8 Hz), 3.54 (2H, d, 5.8 Hz), 3.35 (2H, br s); ¹³C NMR (400 MHz DMSO-d⁶) δ 154.7, 144.9, 136.8, 129.8, 129.2, 123.0, 116.6, 71.7, 64.0; **HRMS** ESI (*m*/*z*): [M-H]⁻ calculated for C₉H₉N₄O₆, 269.0528, found 269.0535.

N'-But-3-enylidene-N,N-diphenylhydrazine (18)

3-Butenaldehyde (71 mg, 1.01 mmol) and *N-N*-diphenyl hydrazine (223 mg, 1.21 mmol) in 1 mL of DCM were stirred at room temperature for 17 hours

before concentrating *in vacuo* to give a brown solid. Purification via flash column chromatography (95:5 petroleum ether : ethyl acetate) gave the pure title compound, **18**, as a yellow oil in a 36 % yield (84 mg, 0.35 mmol). **IR (ATR):** 3061, 1589, 1494, 1298, 1208 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.35 (4H, m), 7.15-7.09 (6H, m), 6.49 (1H, t, J = 5.4), 5.93-5.83 (1H, m), 5.08-5.07 (1H, m), 5.05-5.03 (1H, m), 3.07-3.04 (2H, m); ¹³C NMR (400 MHz, CDCl₃): δ 143.9, 136.9, 134.2, 129.5, 123.8, 122.2, 116.4, 36.9; **HRMS** ESI (m/z): $[M+H]^+$ calculated for C₁₆H₁₇N₂, 237.1386, found 237.1379. $[M+Na]^+$ calculated for C₁₆H₁₆N₂Na, 259.1206, found 259.1196.

4-[(N,N-diphenyl)-hydrazono]-butane-1,2,-triol (14)

To a flask containing hydrazone **18** (20 mg, 0.085 mmol), 4-methyl morpholine-N-oxide (20 mg, 0.17 mmol) and *t*-butyl alcohol (0.25 mL) was added a solution of osmium tetroxide (0.43 mg, 0.0017 mmol) in THF (1.75 mL). The reaction was stirred for 23 hours before saturated sodium thiosulfate (2 mL) was added to quench the reaction. After 40 minutes the product was extracted with ethyl acetate (3 x 3 mL) and the combined organic extracts washed with water (1 x 5 mL) then brine (1 x 5 mL), dried over magnesium sulfate, filtered and concentrated *in vacuo*. Purification *via* silica filtration gave the title compound **14** as a colourless oil in an 87 % yield (20 mg, 0.074 mmol). **IR (ATR):** 3359, 2923, 1589, 1494, 1298, 1210 cm⁻¹; ¹H

NMR (400 MHz, MeOD) δ 7.33 (4H, dd, J = 8.4, 7.6), 7.11-7.07 (2H, m), 7.02 (4H, dd, J = 8.4, 1.0), 6.59 (1H, t, J = 5.5), 3.78-3.72 (1H, m), 3.48 (1H, dd, J = 11.2, 4.7), 3.42 (1H, dd, J = 11.2, 6.2), 2.47 (1H, apparent dt, J = 14.8, 5.5), 2.36 (1H, ddd, J = 14.8, 7.7, 5.5); ¹³**C NMR** (400 MHz, MeOD): δ 145.6, 138.2, 130.7, 125.2, 123.5, 71.8, 66.9, 37.7; **HRMS** ESI (m/z): [M+H]⁺ calculated for C₁₆H₁₉N₂O₂, 271.1441, found 271.1431. [M+Na]⁺ calculated for C₁₆H₁₈N₂NaO₂, 293.1260, found 293.1247.

(R,S,E)-4-[(N,N-diphenyl)-hydrazono]-butane-1,2,3-triol (15)

D-erythrose (20 mg, 0.16 mmol) and N,N-diphenyl hydrazine (35 mg, 0.19 mmol) were dissolved in methanol (3 mL) and stirred for 45 minutes at room temperature before concentration in vacuo. Purification via column chromatography (95:5 DCM : methanol) gave the title compound 15 as a brown oil in a 57 % yield (26 mg, 0.091 mmol). IR (ATR): 3352, 3061, 2925, 1590, 1494, 1297, 1212, 1040 cm⁻¹; $[\alpha]_D^{25}$ (deg cm³ g⁻¹ dm⁻¹) -10.9 (c= 0.85 g cm^{-3} , CH₃Cl); ¹H NMR (400 MHz, MeOD) δ 7.37-7.34 (4H, m), 7.12 (2H, t, J = 7.4), 7.06 (4H, m), 6.54 (1H, d, J = 6.0), 4.24 (1H, dd, J = 6.0, 5.9), 3.67-3.60 (2H, m), 3.55-3.50 (1H, m); ¹³C NMR (400 MHz, MeOD): δ 145.2, 139.2, 130.7, 125.4, 123.5, 75.5, 73.7, 64.3; **HRMS** ESI (m/z): [M+H]⁺ calculated for 287.1390, found 287.1396. [M+Na]⁺ $C_{16}H_{19}N_2O_3$, calculated for C₁₆H₁₈N₂NaO₃, 309.1210, found 309.1212.

L-threose (20 mg, 0.16 mmol) and *N*,*N*-diphenyl hydrazine (35 mg, 0.19 mmol) were dissolved in methanol (3 mL) and stirred at room temperature for 1 hour before concentration in vacuo. Purification via column chromatography (95:5 DCM : methanol) gave the title compound 15 as a brown oil in a 79 % yield (36 mg, 0.13 mmol). IR ATR 3353, 3060, 2927, 1590, 1494, 1296, 1212, 1037 cm^{-1} ; $[\alpha]_{\text{D}}^{25}$ (deg cm³ g⁻¹ dm⁻¹) -5.2 (c= 1.1 g cm⁻³, CH₃Cl); ¹H NMR (400 MHz, MeOD) δ 7.35 (4H, dd, J = 8.4, 7.5), 7.18 (2H, t, J = 7.5), 7.05 (4H, dd, J = 8.4, 1.0), 6.51 (1H, d, J = 5.7), 4.27 (1H, dd, J = 5.7, 4.4 ppm), 3.65-3.60 (2H, m), 3.50 (1H, dd, J = 12.5, 8.0); ¹³C NMR (400 MHz, MeOD): δ 145.1, 139.0, 130.8, 125.5, 123.5, 75.2, 73.4, 64.0; **HRMS** ESI (m/z): [M+H]⁺ calculated for 287.1390, found 287.1395. [M+Na]⁺ $C_{16}H_{19}N_2O_3$, calculated for C₁₆H₁₈N₂NaO₃, 309.1210, found 309.1210.

Synthesis of Catalysts

Synthesis of catalysts (D-8)

L and D *N*-methyl leucine ethyl esters were synthesised according to

Burroughs *et al.*⁵

Potassium bis(trimethylsilyl)amide 0.5 M in toluene (20 mL, 9.76 mmol) was added to a stirred solution of *N*-BOC-D-Leucine ethyl ester **D-17** (2.3 g, 3.09 mmol) in dry THF (20 mL) at -78 °C. After 30 minutes methyl iodide (0.61 mL, 9.76 mmol) was added dropwise and the reaction stirred for 1 hour at -78 °C and a further 16 hours at room temperature. The solution was washed with saturated potassium carbonate solution (30 mL) followed by 1 M sodium hydroxide (30 mL) and brine (30 mL) extracting each time with dichloromethane (3x 30 mL). The combined organic extracts were dried over magnesium sulfate, filtered and concentrated *in vacuo* to give the crude product as a yellow oil. Purification *via* column chromatography (10:90 ethyl

acetate : hexane) gave the title produce, **D-18**, as a colourless oil in an 83 % yield (700 mg, 2.56 mmol); **IR** (ATR): 2962, 1741, 1694, 1390, 1363, 1320, 1148, 1031 cm⁻¹; $[\alpha]_D^{25}$, (deg cm³ g⁻¹ dm⁻¹) +8.9 (c= 1.0 g cm⁻³, ethanol); ¹H **NMR** (400 MHz CDCl₃): Apparent rotamers δ 4.84 (1H, t, *J* = 8.0 Hz), 4.55 (1H, dd, J= 10.8, 4.7 Hz), 4.16 (4H, q, 7.1 Hz), 2.79 (3H, s), 2.76 (3H, s), 1.74-1.51 (6H, m) 1.45 (9H, s), 1.44 (9H, s), 1.27-1.23 (6H, m), 0.94 (6H, d, 6.8 Hz), 0.92 (6H, d, 6.8 Hz); ¹³C NMR (400 MHz CDCl₃): δ 172.4, 156.4, 80.3, 80.0, 61.1, 57.3, 56.1, 38.0, 28.5, 24.8, 23.4, 21.5, 21.3, 14.4; **HRMS** ESI (*m/z*): [M+H]⁺ calculated for C₁₄H₂₈NO₄, 247.2013, found 274.2000. [M+Na]⁺ calculated for C₁₄H₂₇NO₄Na, 296.1832, found 296.1822.

Boc-N-methyl-L-leucine ethyl ester (L-18)

Boc-*N*-methyl-L-leucine ethyl ester (**L-18**) was prepared in the same way as **D-18** from **L-17**. Spectroscopic data was in agreement with **D-18** and the literature.⁵

N-Methyl-D-leucine ethylester (D-8)

Trifluoroacetic acid (1.12 mL, 14.6 mmol) was added to a solution of BOC-*N*-Methyl-D-leucine ethyl ester **D-18** (200 mg, 0.73 mmol) in dichloromethane (20 mL) and stirred at 14 hours under a nitrogen atmosphere. The solution was then concentrated *in vacuo* and partitioned between dichloromethane (4 mL) and saturated sodium bicarbonate (4 mL) and extracted 2 more times with dichloromethane. The organic layers were combined, dried over magnesium sulphate and concentrated *in vaco* to give **D-8** as a colourless oil in a 90 % yield (115 mg, 0.55 mmol). **IR (ATR):** 2956 , 1731, 1469, 1368, 1178, 1026 cm⁻¹; $[\alpha]_D^{25}$ (deg cm³ g⁻¹ dm⁻¹) -1.3 (c= 1.0 g cm⁻³, CH₃Cl); ¹H **NMR** (400 MHz, CDCl₃) δ 4.29 (2H, q, 7.1 Hz), 3.81 (1H br dd, 7.6, 3.4 Hz), 2.77 (s, 3H), 1.86-1.79 (1H, m), 1.77-1.72 (2H, m), 1.31 (3H, t, 7.1 Hz), 0.96 (6H, d, 5.6 Hz,); ¹³C NMR (400 MHz, CDCl₃): δ 176.2, 62.1, 60.9, 43.1, 35.1, 25.4, 23.1, 22.9, 14.8; **HRMS** ESI (m/z): [M+H]⁺ calculated for C₉H₂₀NO₂, 174.1489, found 174.1491.

N-Methyl-L-leucine ethylester (L-19)

N-Methyl-L-leucine ethyl ester (12-L) was prepared in the same was as **L-8** from **L-18**. Spectroscopic data was in agreement with **D-18** and the literature.⁵

Compound **9** was synthesised according to the literature with all data in agreement.⁶ **Melting point** 92-94 °C; **IR (ATR):** 2992, 2789, 2393, 1674 cm⁻¹, $[\alpha]_D^{25}$ (deg cm³ g⁻¹ dm⁻¹) -16.7 (c= 1.0 in methanol); ¹H NMR (400 MHz, CD₃OD): δ 4.66 (1H, t, 7.4Hz), 3.34-3.50 (2H, m), 2.44-2.54 (1H, m), 2.05-2.36 (3H, m); ¹³C NMR (400 MHz, CDCl₃): δ 116.5, 116.5 , 47.9, 47.0, 31.2, 24.5; **HRMS** ESI (m/z): [M+H]⁺ calculated for C₅H₉N₂, 97.07602, found 97. 0757.

Synthesis of Catalyst (10)

Z-L-Valine amide (20)

To a stirred solution of Z-L-valine 19 (2.0 g, 7.96 mmol) and triethylamine (1.2 mL, 1.1 eq) in dry THF (40 mL) at 0°C was added ethyl chloroformate (0.76 mL, 1eq). After 30 minutes 7N ammonia in methanol (1.66 mL, 1.5 eq) was added and stirred at 0 °C for 1 hour and a further 19 hours at room temperature. The resulting white precipitate was filtered and washed with ice cold water to give the title compound **20** as a white solid in a 75 % yield (1.5 g, 6.0 mmol). Melting point 205-208°C; IR (ATR): 3380, 3316, 3063, 3027, 2957, 2873, 1683, 1645, 1536, 1455, 1305, 1246, 1040 cm⁻¹; **[α]_D²⁵** (deg cm³ q^{-1} dm⁻¹) +25.0 (c=1.0 q cm⁻³ in dimethyl formamide) literature +24.2 (c=1.0 q cm⁻³ in dimethyl formamide)⁷; ¹H NMR (400 MHz DMSO d⁶) δ 7.37-7.30 (5H, m), 7.16 (1H, d, J= 9.0 Hz), 7.04 (1H, s), 5.03 (2H, s), 3.80 (1H, dd, J= 9.0, 6.8 Hz), 1.95 (1H, apparent oct, J= 6.8 Hz), 0.86 (3H, d, J= 6.8 Hz), 0.83 (3H, d, J= 6.8 Hz); ¹³C NMR (DMSO d⁶ 400 MHz) δ 173.3, 156.2, 131.2, 128.4, 127.0, 65.4, 60.1, 19.4, 18.0; **HRMS** ESI (m/z): [M+H]⁺ calculated for C₉H₂₀NO₂, 251.1390, found 251.1387. [M+Na]⁺ calculated for C₁₃H₁₈N₂O₃Na, 273.1210, found 273.1217.

Z-L-Valine amide 20 (1.5 g, 6 mmol) and triethylamine (1.83 mL, 2.2 eq) were dissolved in dry THF (20 mL) at 0 °C. After 30 minutes trifluoroacetic anhydride (1.26 mL, 1.5 eq) was added and stirred at 0 °C for 1 hour and a further 14 hours at room temperature. The solvent was removed and the crude oil redissolved in ethyl acetate. The organic layer was washed three times with 2M HCl, then once with brine. The organic extracts were combined, dried over magnesium sulfate, filtered and concentrated in vacuo to give the crude product as red translucent oil. Purification via column chromatography (95:5 DCM: MeOH) gave the crude product 21 as a colourless oil (1.3 g, 93 %), upon trituration a colourless crystalline compound was formed. Melting point 53-56 °C; IR (ATR): 3294, 3062, 2980, 2929, 2243, 1690, 1535, 1467, 1455, 1321, 1303, 1253, 1136, 1028, 1049 cm⁻¹; $[\alpha]_n^{25}$ (deg cm³ g⁻¹ dm⁻¹) -37.3 (c = 0.97 in methanol) literature -55 (c=1.13 g cm⁻³ in chloroform)⁸; ¹H **NMR** (400 MHz DMSO d^6): δ 8.22 (1H, br d, J= 8.2 Hz), 7.39-7.33 (5H, m), 5.09 (2H, s), 4.40 (1H, apparent t, J= 7.8 Hz), 1.98, (1H, m), 1.00 (3H, d, J= 6.8 Hz), 0.94 (3H, d, J= 6.8 Hz); ¹³C NMR (400 MHz CDCl₃): δ 155.5, 135.7, 128.8, 128.6, 128.4,117.8, 67.9, 49.1, 31.9, 18.6, 18.0; HRMS ESI (m/z): $[M+Na]^{\dagger}$ calculated for C₁₃H₁₆N₂O₂Na, 255.1104, found 255.1113.

A flask containing *Z*-L-valine nitrile **22** (400 mg, 1.72 mmol), Pearlman's reagent (20% bw, 119 mg) and ethyl acetate (15 mL) were evacuated and placed under a hydrogen atmosphere (1 atm). After 1 hour the mixture was filtered through celite washing the celite thoroughly with ethyl acetate (50 mL). 4M HCl in dioxane (1.0 mL) was added and stirred for 10 minutes turning the solution cloudy. Upon evaporation compound **10** was isolated as an off-white solid in a 75 % yield (173 mg, 1.29 mmol). The free amine was isolated by neutralisation with saturated sodium bicarbonate and subsequent extraction with dichloromethane. **IR (ATR);** 2960, 2866, 1727, 1707, 1160 cm⁻¹; $[\alpha]_D^{25}$ (deg cm³ g⁻¹ dm⁻¹) -8.3 (c= 0.83 in dichloromethane); ¹H NMR (CDCl₃ 400MHz): δ 3.52 (1H, d, J= 5.6 Hz), 1.93, (1H, dspt, 6.8, 5.6 Hz), 1.66 (2H, br s), 1.07 (3H, d, J= 6.8 Hz), 1.06 (3H, d, J= 6.8 Hz); ¹³C NMR (CDCl₃ 400 MHz): δ 121.4, 49.9, 33.0, 19.0, 17.7; HRMS ESI (m/z): [M+H]⁺ calculated for C₅H₁₁N₂, 99.0917, found 99.0917.

Synthesis of the cyclic by-product (17): 4-Isopropyl-2-methyl-oxazolidin-5-ylidene amine (17)

L-valine nitrile, **10** (43 mg, 0.44 mmol) was dissolved in water (1 mL) and added to a solution containing acetaldehyde (19 mg, 0.44 mmol) in water (1 mL). The solution was stirred at room temperature for 24 hours before the

solvent was removed *in vacuo*. Purification *via* column chromatography (MeOH : DCM, 5 : 95) gave the title compound **17**, as a colourless oil in a 16 % yield (10 mg, 0.07 mmol). **IR (ATR)** 3239, 2962, 2931, 2872, 1688, 1464, 1432, 1380, 1346, 1292, 1099 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) as a mixture of diastereomers: δ 6.72 (1H, br s), 4.67 (1H, dq, J = 5.6, 1,1 Hz), 3.43 (1H, dd, J = 3.8, 1.3 Hz), 2.19-2.09 (1H, m), 1.85 (1H, br s), 1.34 (3H, d, J = 5.6 Hz), 1.05 (3H, d, J = 6.9 Hz), 0.94 (3H, d, J = 6.9 Hz); ¹³C NMR (CDCl₃ 400 MHz): As a mixture of diastereomers. Major δ 178.4, 65.6, 65.2, 29.0, 23.2, 20.0, 17.1; Minor δ 178.4, 67.1, 64.3, 30.1, 24.0, 20.0, 17.4; HRMS ESI (m/z): [M+H]⁺ calculated for C₇H₁₅N₂O, 143.1179, found 143.1171. [M+Na]⁺ calculated for C₇H₁₄N₂ONa, 165.0998, found 165.0998.

General Procedure for the Prebiotic Formation of Carbohydrates

Acetaldehyde (44 mg, 1 mmol) and D-glyceraldehyde (90 mg, 1 mmol) were added in 3 mL of aqueous medium to a flask containing catalyst (20 mol %) and stirred for 24 hours at room temperature. The solvent was removed *in vacuo* and redissolved in 5mL of methanol. *N-N-*Diphenyl hydrazine (550 mg, 3 mmol) and 2 drops of acetic acid were added and the reaction stirred for 1 hour before concentrating *in vacuo* to give a red/brown oil. The products were isolated by column chromatography (DCM : MeOH 97:3 to 90:10). Further purification *via* preparative TLC (90:10 EtOAc : Hexane) afforded the product as a mixture of diastereomers. The diastereomeric ratio was determined *via* ¹H NMR spectroscopy using the azomethine peaks as a reference. There are two examples shown below. The first is a ¹H NMR spectrum of the two sugar standards mixed together and the azomethine peak used for diasteromeric ratio determination. The second spectrum is a ¹H NMR spectrum of the assay after purification.

Figure 1. ¹H NMR spectrum of the two sugar standards.

Figure 2. ¹H NMR spectrum of the deoxyribose forming reaction after purification.

D-Glyceraldehyde

L-Valine nitrile catalyst (20 mg, 0.20 mmol) and glycolaldehyde dimer (60 mg, 0.5 mmol) were dissolved in 1.7 mL pH 7 phosphate buffer. Paraformaldehyde (750 mg) was dissolved in water (25 mL) and heated to 60°C for 2 hours. Upon cooling, 1.3 mL of the solution was added to the reaction and stirred at room temperature for 24 hours. Dinitrophenyl hydrazine (510 mg, 2.6 mmol) was added and stirred for a further 24 hours followed by concentration in vacuo to afford the crude mixture of hydrazones as an orange solid. Purification by column chromatography (5:95 MeOH : DCM) followed by preparative thin layer chorography (2:98 MeOH : DCM) yielded the glyceraldehyde-trapped hydrazone as a yellow solid (3 mg, 0.01 mmol). The enantiomeric excess of hydrazone product was analyzed via HPLC using a chiral AD column (15:85 isopropanol : hexane) at a flow rate of 1.0 mL/min.

23

Figure 3. HPLC run of glyceraldehyde hydrazone from reaction. Each HPLC run was repeated three times and an average %ee taken. There is a 6% ee in favour of D-glyceraldehyde hydrazone. L-glyceraldehyde elutes at ~46 minutes and D-glycerladehyde at 68 minutes.

Figure 4. HPLC run of glyceraldehyde hydrazone from spiked with authentic D-glyceraldehyde hydrazone.

Procedure for one-pot synthesis of sugar molecules from interstellar starting material.

L-Proline benzylester.HCI was washed with a saturated solution of sodium bicarbonate and extracted with DCM. The organic layer was dried over magnesium sulfate, filtered and concentrated in vacuo to give the free amino ester. Paraformaldehyde (750 mg) was dissolved in water (25 mL) and heated to 60°C for 2 hours. 1.3 mL of the solution was added to a flask containing a solution of L-proline benzyl ester (53 mg, 0.26 mmol), glycolaldehyde dimer (77.5 mg, 0.65 mmol) and acetaldehyde (56 mg, 1.29 mmol) in 3 mL pH 7 phosphate buffer. The solution was stirred for 7 days at room temperature before concentrating in vacuo to give a yellow/orange oil. The mixture of products was redissolved in methanol (5 mL) to which N, N-diphenyl hydrazine (720 mg, 3.9 mmol) and 2 drops of acetic acid were added and stirred at room temperature for 1 hour. Concentration in vacuo gave the crude mixture of hydrazones as a brown oil. The products were isolated by column chromatography (5 : 95 EtOAc : hexane to 100 % EtOAc). Further separation of some compounds was achieved by PTLC. Figure 5 shows the mass spectrum of the crude reaction mixture and the fraction containing the tetrose and pentose products. The mass of deoxyribose is highlighted on the spectra.

25

HPLC trace of one-pot reaction. The fraction containing tetrose and pentose products trapped with diphenylhydrazine.

Mass spectrum of one-pot reaction. The fraction containing tetrose and pentose products trapped with diphenylhydrazine.

Analysis File Method Submission I Instrument ESI	name Name		pac61942as_P 400p_acn1260 pac61942as micrOTOF Positive	1-F-6_01_1224 _2c1s.m	.d								
Intens.												+MS, 1.	4min #168
xius									309	.1197			
1.5													
-													
1													
-													
1.0-				168.0802									
]													
0.5-										3234359			
-													
1							249.0	987 200 1000					
-	116.9872 1	80.160	0		191.0677	217.1034	. 11	269.1280	287.1386 3014533		353.2630	371.0967	
0.0-	استير سأطب سيتيم	الملالي		يتنبي تصليقا التصيار	200	يتابغا ترينا يتقول	السليمية		<u></u>	llhann an dhuann	<u></u>		m/z
Me	eas.m/z #	i lo	n Formula	m/z	err [ppm]	err [mDa]	mSigma	Mean err [ppm]]				
3	01.1533 1	C	7H21N2O3	301.1547	-4.5	-1.3	14.1	5.0	0				
3	23.1359 1	- C'	/H2UN2NaO	3 323.1366	2.3	0.7	17.7	6.5	5				

York - Chemistry - Mass Spectrometry Service Report

Analysis Information

ams-7-70 fr6

Acquisition Date

17/11/2016 12:28:00

HPLC trace of one-pot reaction. The fraction containing tetrose and pentose products spiked with authentic hydrazone-trapped 2-deoxy-D-ribose.

HPLC trace of one-pot reaction. The fraction containing tetrose and pentose products spiked with authentic hydrazone-trapped 2-deoxy-D-ribose and 2-deoxy-L-ribose.

Compound 5

Page 1

ams-3-3

Analysis Information

Acquisition Date 17/10/2014 12:25:09

pac48802as_P1-B-7_01_54122.d
400p_meoh1260_2c1s.m
pac48802as
micrOTOF
Positive

ams-3-43

York - Chemistry - Mass Spectrometry Service Report

Analysis InformationAcquisition Date22/01/2015 09:39:10Analysis Filenamepac50483as_P1-F-3_01_56220.d200p_mech1260_2c1s.m200p_mech1260_2c1s.mSubmission Namepac50483as100p_mech1260_2c1s.m100p_mech1260_2c1s.mInstrumentmicrOTOF100p_mech1260_2c1s.m100p_mech1260_2c1s.mESIPositive100p_mech1260_2c1s.m100p_mech1260_2c1s.m

Administrator 1020 93.24 %T Sample 1020 By Administrator Date Tuesday, April 01 2014

ams-1-71 col

York - Chemistry - Mass Spectrometry Service Report

Parameter	Valu	ue]											
1) Solvent	D_2C)													
2) Spectrometer Frequence	су 100	MHz								1					
3) Nucleus	¹³ C	;								Hethan					
HO'' OH OH Compound 15				_				A 22.1967 A 72.1162 A 69.7066 A 66.6585 A 66.658 A 66.65 A 6	6129215	49.0000 h	40.7471 38.7480				
						1									
	dina matadamina ad anisandri dan s	uðarmalarins kallara kallara	nik dana kalantika katukatu	15400kelal disawakataka	ndhowietski envede	ad ditted de sone me fel de bieter nit sone fikte	ula-bicanoomidikika	in manual with	(d)/Naadiliki, bisilka ning	mail (Maria	Ined All York Indones	ulatialikati sitema kesangke	kelementik ja estatuta jike	t í half an fhi an thiait fai bh	s⊎s/Mansun
e fa a fill a fail i a a tra i a	a titl far se i na se la s	an an a' a fa a sta a	Lable set al la	dadi Ula onterferiorite		no eta da anti		Live adle with a set of	a to made of the discussion of		undel les directioned.		district in data data.	rfn af Stafre freisen af Lei	ann taldaith.
200 190 180 17	0 160	150 14	40 130	120	110 f	100 90 1 (ppm)	80	70	60	50	40	30	20	10	。 46

RJKT_30 06 2015_22 RJKT_30 06 2015_022

RJKT_27 02 2015_31 RJKT_27 02 2015_031

York - Chemistry - Mass Spectrometry Service Report

ams-3-11-1

Compound 6

Analysis Information

.

Acquisition Date

06/11/2014 09:59:57

Analysis Filename	pac49223as_P1-E-8_01_54680.d
Method	400p_meoh1260_2c1s.m
Submission Name	pac49223as
Instrument	micrOTOF
ESI	Positive

ams-2-16-b

York - Chemistry - Mass Spectrometry Service Report

Analysis Information

Acquisition Date

12/06/2014 15:57:35

Analysis Filename	pac46965as_1-f,1_01_51717.d
Method	400n_meoh.m
Submission Name	pac46965as
Instrument	micrOTOF
ESI	Negative

ams-7-80

York - Chemistry - Mass Spectrometry Service Report

pac62310as

pac62310as_P1-B-9_01_1739.d 400p_acn1260_2c1s.m

Analysis Information Analysis Filename

Submission Name

Method

Acquisition Date

12/12/2016 09:54:50

Meas. m/z	#	Ion Formula	m/z	err [ppm]	err [mDa]	mSigma	Mean err [ppm]
237.1379	1	C16H17N2	237.1386	-3,1	-0.7	7.5	2.9
259.1196	1	C16H16N2Na	259.1206	-3.7	-1.0	10.1	4,8

AMS-7-86

PerkinElmer Spectrum Version 10.03.07 18 December 2016 15:58

Page 1

ams-7-86 cr

York - Chemistry - Mass Spectrometry Service Report

Analysis Information Acquisition Date 14/12/2016 13:57:53 Analysis Filename pac62374as_P1-C-5_01_1816.d Method 400p_lcms_2c1s.m pac62374as Submission Name instrument micrOTOF ESI Positive +M5, 1.4min #164 Intens. x10⁵ 168.0806 271.1431 293,1247 3 2 1-235.0832 247.0825 185.1075 309.1130 211.1217 152.0576 129.0185 150 فسيغت C 125 175 225 250 275 300 325 350 375 m/z 200

Meas. m/z	#	ton Formula	m/z	err [ppm]	err [mDa]	mSigma	Mean err [ppm]
271.1431	1	C16H19N2O2	271.1441	-3.5	-1.0	7.6	3.2
293.1247	1	C16H18N2NaO2	293.1260	-4.7	-1.4	10.0	4.5

Compound 15 A

RJKT_17 12 2016_06 RJKT_17 12 2016_006

Compound 15 A York - Chemistry - Mass Spectrometry Service Report

Analysis Information

Analysis Filenamepac62317as_P1-C-6_01_1745.dMethod400p_acn1260_2c1s.mSubmission Namepac62317asinstrumentrnicrOTOFESIPositive

ams-7-81

Acquisition Date

12/12/2016 14:15:59

Compound **15 B** York - Chemistry - Mass Spectrometry Service Report

ams-7-87

Compound D-8

RJKT_14 07 2015_04 RJKT_14 07 2015_004

Compound D-8

ams-4-37 cr

PerkinElmer Spectrum Version 10.03.07 14 July 2015 13:49

RJKT_14 07 2015_04
 RJKT_14 07 2015_004

ams-4-37 cr

PerkinElmer Spectrum Version 10.03.07 01 November 2015 16:07

-

PEService 162 Sample 162 By PEService Date Sunday, November 01 2015

ams-5-16-separatio

York - Chemistry		п	
Analysis information		Acquisition Date	14/10/2015 09:41:57
Analysis Filename Method Submission Name Instrument ESI	pac55038as_P1-D-3_01_61494.d 400p_mech1260_2c1s.m pac55038as micrOTOF Positive		

Meas. m/z	#	Formula	m/z	err [ppm]	err [mDa]	mSigma	Mean err (ppm)
251,1387	1	C 13 H 19 N 2 O 3	251.1390	1.3	0.3	27.9	1.4
273.1217	1	C 13 H 18 N 2 Na O 3	273.1210	-2.6	-0.7	5,3	-2.0

PerkinElmer Spectrum Version 10.03.07 01 November 2015 15:13

,

PEService 160 Sample 160 By PEService Date Friday, October 30 2015

AMS-5-22

Analysis Information		Acquisition Date	21/10/2015 11:14:41	
Analysis Filename Method Submission Name Instrument ESI	Pac55159as_P1-D-1_01_61641.d 400p_meoh1260_2c1s.m Pac55159as micrOTOF Positive			

Parameter 1) Solvent 2) Spectrometer Frequency 3) Nucleus	Value CDCl ₃ 100 MHz ¹³ C							Chloroform-d								
H ₂ N N				— 121.3503 —							49.9273		32.9899	→ 18.9590 → 17.6916		
Compound 10								I								
				1												
yang tinak peranta kang dagai kang bang dalam dan penanta kang dara penanta kang dara penanta dara penanta dara	abilanaj),(104,(104),140,(104),107,107),ay,(104),107,107,107,107,107,107,107,107,107,107	ingeden angelike met te enderen	#P\$.yt.p.Web/P\$41,p=414P4	100-1900 100-100-100-100-100-100-100-100-100-1	\$\$\$\$\$\$\$\$\$.jsc.dock[\\$\$\$\$[]{gd_0.40	¹ 1474867111594911111111111111111111111111111111	สร้างการสูบประสภาพระสาธารณ	amuquere de la com	eff-callybysauss/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spaces/spa	nta dan yai menj ^a ntaki	derper wirmon	nsangegen an	and house and a company of	generation of the Strength	⁶ 61.009/10000.00000.000000.000000000000000	ader vede belgelange
	160 150	140	120	120	110								30	20		
200 190 180 170	100 150	140	130	120	110	f1 (ppm)	90	80	70	60	50	40	30	20	10	0

PerkinElmer Spectrum Version 10.03.07 08 June 2016 11:52

_____ RJKT_07 06 2016_06 RJKT_07 06 2016_006

ams-5-32

04/11/2015 16:15:46

Acquisition Date

York - Chemistry - Mass Spectrometry Service Report

Analysis Information Analysis Filename pac55488as_P1-E-2_01_61998.d Method 200p_meoh1260_2c1s.m Submission Name pac55488as Instrument micrOTOF ESI Positive

 Meas. m/z
 # Formula
 m/z
 err [ppm]
 err [mDa]
 mSigma
 Mean err [ppm]

 99.0917
 1
 C 5 H 11 N 2
 99.0917
 0.1
 0.0
 7.0
 0.3

AMS-6-49-A

Page 1

≡N н

nb-01-32

