Simultaneous Crystallization of *in situ* Formed Conjugated Polymer and Inorganic Matrix for Structure Solving

Guangfeng Liu^a, Peiyang Gu^a, Lina Nie^a, and Qichun Zhang*^{ab}

^aSchool of Materials Science and Engineering, Nanyang Technological University Singapore 639798, Singapore

^bDivision of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 639798, Singapore

Contents:

Materials and Methods

Figures S1 to S9

Table S1

Materials and Methods

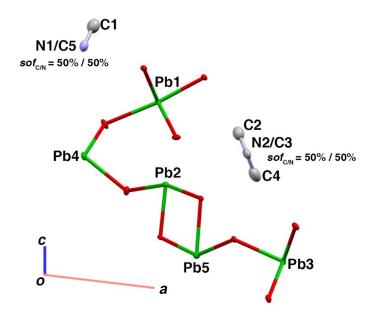
Experimental section: 4,4'-bipyridine, 4-bromopyridine hydrochloride, PbBr₂, HBr aqueous solution (HBr > 45%), Br₂, CH₃OH, CH₃CH₂OH and CH₃CH₂CH₂OH were purchased from Sigma-Aldrich Company. All starting materials are analytical grade and were used as received without further purification. To synthesize compound **1**, a mixture of PbBr₂ (3.84 mmol, 1.4 g) and 4,4'-bipyridine (0.64 mmol, 0.1 g) was heated with HBr aqueous solution (HBr> 45%, 2 ml), Br₂ (0.1 ml) and CH₃OH (CH₃CH₂OH or CH₃CH₂CH₂OH can also be used in this reaction) (5 ml) in 25 ml Teflon-lined stainless-steel autoclaves at 120 °C for 5 days. Upon cooling to room temperature at 10 K h⁻¹, light yellow needle crystals of **1** were obtained in ~ 50% yield (based on 4,4'-bipyridine). To synthesize compound **2**, a mixture of PbBr₂ (3.84 mmol, 1.4 g) and 4-bromopyridine hydrochloride (1.28 mmol, 0.25 g) was heated with HBr aqueous solution (HBr> 45%, 2 ml), Br₂ (0.1 ml) and CH₃CH₂CH₂OH (5 ml) in 25 ml Teflon-lined stainless-steel autoclaves at 10 K h⁻¹, light yellow needle crystals of **1** were obtained in ~ 50% yield (based on 4,4'-bipyridine). To synthesize compound **2**, a mixture of PbBr₂ (3.84 mmol, 1.4 g) and 4-bromopyridine hydrochloride (1.28 mmol, 0.25 g) was heated with HBr aqueous solution (HBr> 45%, 2 ml), Br₂ (0.1 ml) and CH₃CH₂CH₂OH (5 ml) in 25 ml Teflon-lined stainless-steel autoclaves at 120 °C for 5 days. Upon cooling to room temperature at 10 K h⁻¹, light yellow needle crystals of **2** were obtained in > 70% yield (based on 4-bromopyridine hydrochloride).

Single-crystal X-ray diffraction. Suitable single-crystals of compounds 1 and 2 were selected for single-crystal X-ray data collection with a Bruker SMART APEX-II CCD area detector on a D8 goniometer. Data were collected using graphite-monochromated and 0.5 mm-Mono Cap-collimated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) with the ω scan method.¹ Data were processed with the SAINT program of the APEX2 software for reduction and cell refinement. Multi-scan absorption corrections were applied by using the SADABS program for area detector. All structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 (SHELX-97).² All non-H atoms were refined anisotropically. For compound **2**, hydrogen atoms were placed in idealized positions and included as riding with U_{iso} (H) = 1.2 U_{eq} (C). Crystallographic data and structural refinements are summarized in Table S1.

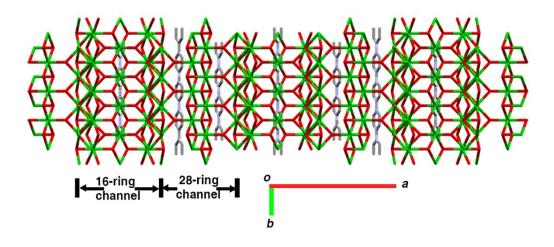
Powder x-ray diffraction. The phase identity and purity of crystalline samples 1 were verified by power X-ray diffraction (PXRD) on a Bruker-AXS D8 ADVANCE X-ray diffractometer equipped with Cu K α radiation ($\lambda = 1.54056$ Å) in the 2 θ range of 9–50°, with a step size of 0.02° and scan-speed of 0.2 s step⁻¹ at room temperature.

UV–Vis spectrum. Absorption data were collected on a Hitachi U-4100 UV–vis–NIR spectrophotometer equipped with an integrating sphere operating in di□use-reflectance mode at the ambient environment for crystalline sample **1**.

FT-IR spectroscopy. The attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR) of crystalline **1** sample were recorded on a Thermo-Nicolet Nexus 670 spectrometer in the range of 650-4,000 cm⁻¹ at room temperature.


Thermal Measurement. Thermogravimetric test (TGA) for compound **1** is carried out on a TGA analyzer (Q500). The sample was placed in Pt crucible, and heated at a rate of 10 K \cdot min⁻¹ from room temperature to 690 °C under flowing nitrogen gas.

Elemental analysis. Elemental analysis was done by using a PerkinElmer 2400Series II CHNS/O elemental analyzer.


Photoelectron Chemical Measurements.

Electrode Preparation: To fabricate the photoelectrode, a well-dispersed 5 mg mL⁻¹ suspension for compound **1** with pure ethanol as solvent was prepared by brief sonication in a water bath. Fluorine-doped tin oxide (FTO) coated glasses $(1.0 \times 2.0 \text{ cm}^2)$ were used as the substrate. The substrates were cleaned thoroughly by sonication in 5% detergent (Decon **®** 90) for 30 minutes first and then rinsed with deionized water (DI water) for several times, which were followed by sonication in DI water,

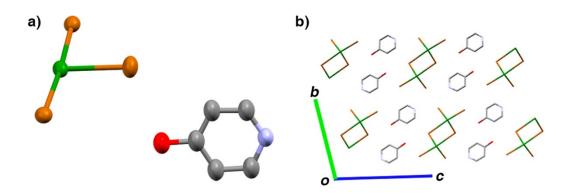

acetone, 2-propanol for each 15 minutes. After that, 50 μ L of different sample suspensions were dropped onto the surface of FTO substrates, which were masked using Ti foil with an effective area of 0.283 cm². The samples were dried under vacuum at 80 °C for 6 hrs. Photoelectrochemical Measurements: the photoelectrochemical tests were performed using an electrochemical workstation (CHI760E). The PEC property of compound **1** was measured in a three-electrode electrochemical system with Ag/AgCl electrode in a saturated KCl solution, Pt plate, thin film of **1**, and 0.5 M Na₂SO₄ as reference, counter, working electrodes, and electrolyte under a 300 W xenon lamp (Newport) coupled to an AM 1.5G filter. To convert the measured voltage into the voltage *vs*. the reversible hydrogen electrode (RHE), the following calculation was performed: VRHE = VAg/AgCl + 0.197 + 0.059 × pH.

Figure S1. The asymmetric unit of compound **1** with 50% probability ellipsoids. Color scheme: Pb(II), green; Br, red; C, grey; N, blue.

Figure S2. The poly(1,4-pyridinium) polycationic chains are encapsulated in the bromoplumbate 3D open frameworks (viewed along the c axis). Color scheme: Pb(II), green; Br, red; C, grey; N, blue.

Figure S3. a) The asymmetric unit of compound **2** with 50% probability ellipsoids. Color scheme: Pb(II), green; Br, brown; O, red; C, grey; N, blue. The hydrogen atoms are omitted for clarity. b) The packing pattern of compound **2** viewed along the *a*-axis, showing 1D [PbBr₃]_nⁿ⁻ chains.

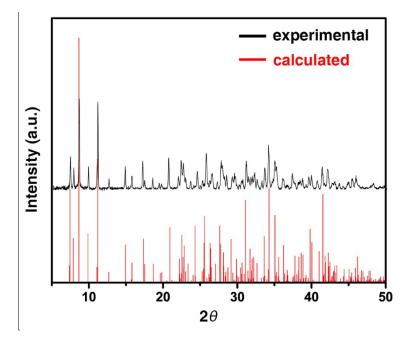


Figure S4. Simulated and experimental XRD powder patterns of compound 1.

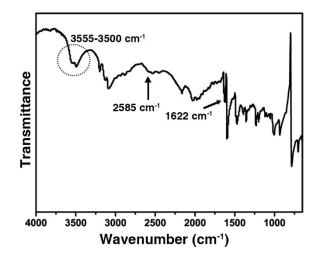


Figure S5. The FT-IR spectrum of compound 1.

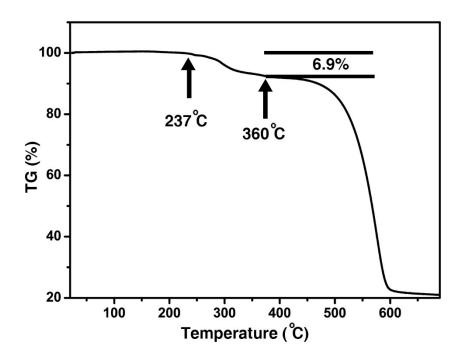


Figure S6. TGA curve of compound 1.

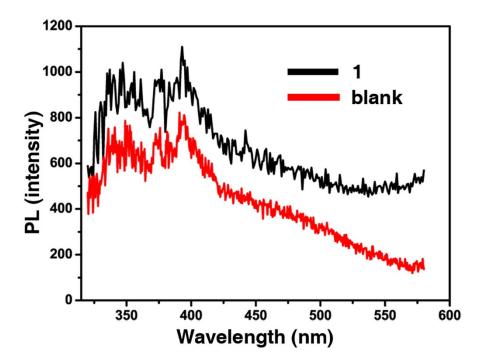
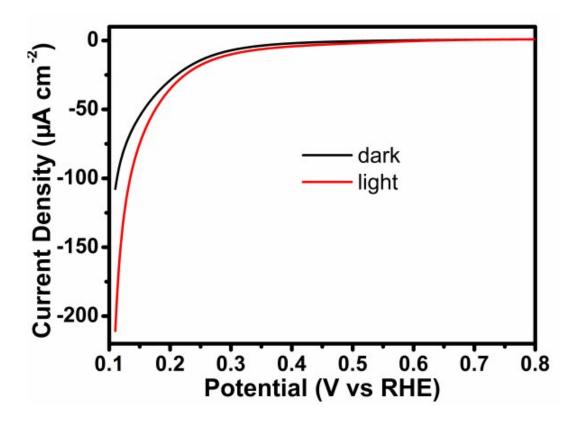



Figure S7. The PL spectrum of compound 1 with the excitation wavelength as 300 nm.

Figure S8. LSV of film of **1** under dark (black line) and under simulated solar light irradiation (red line) in 0.5 M Na₂SO₄ aqueous solution.

Compound	1	2
Crystal system	Monoclinic	triclinic
Space group	<i>C</i> ₂ / <i>m</i>	P-1
Ζ	2	2
color	faint yellow	faint yellow
a (Å)	47.7482 (16)	4.3093 (8)
b (Å)	4.34560 (10)	10.586 (2)
c (Å)	12.0277 (4)	12.335 (2)
<i>α</i> (deg)	90	103.012 (2)
β (deg)	96.628 (3)	97.348 (2)
γ (deg)	90	94.651 (2)
V (Å3)	2479.00 (13)	540.23 (18)
$\lambda (Mo K_{\alpha}) (Å)$	0.71073	0.70173
Collected	26766	2481
reflns	3203	2481
Unique reflns	130	102
Parameters	0.0335	0.0421
R (int)	0.0204	0.0368
$R_{1}[I > 2\sigma(I)]$	0.0455	0.1044
$wR_2[I > 2\sigma(I)]$	1.178	1.081
GOF		

 Table S1. Crystallographic data and structure refinement parameters of compound 1 and 2.

[S1] APEX2 (version 2009.9-0); Bruker AXS Inc., Madison, WI, 2009.

[S2] Sheldrick, G. M., Acta. Crystallogr. 2008, A64, 112.